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Abstract

The problems of maximum likelihood estimates of multinomial parameters subject to stochastic
ordering have been widely discussed. However, in some applications, the multinomial parameters p and
q may not only satisfy the stochastically ordered constraints but also the equality of some of these pa-
rameters. We follow Barlow and Brunk’s method (1972) and obtain the Fenchel duality projection-type
maximum likelihood estimates of multinomial parameters under this modified hypothesis for both one-
sample and two-sample problems. The consistency of the estimates is proved and an example is also

presented as an illustration.
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Introduction

Let p=(p1, P2, -, Px) and 4=(q1, g2, - qx)
be two collections of multinomial parameters and
assume that Vi=1, 2, .., k, p;>0, q; >0, 2k, pi=1
and 2X, q;=1. The distribution associated with p is
said to be stochastically smaller than the distribu-
tion associated with q if

é;plZ gql’ i=1r 27 evey k'l;

which we denote symbolically by p>>q. The prob-
lems of maximum likelihood estimates of multino-
mial parameters subject to stochastic ordering have
been widely discussed. Brunk et al. (1966) obtained
the two-sample maximum likelihood estimates of
stochastically ordered continuous distributions.
Robertson and Wright (1974) extended Brunk et
al’s result and found two-sample maximum likeli-
hood estimates of multivariate stochastically or-
dered distributions. Barlow and Brunk (1972) ap-

plied Fenchel duality and developed projection-type
maximum likelihood estimates of multinomial dis-
tributions subject to the stochastically ordered con-
straints. They considered both one-sample and two-
sample estimation problems. Sampson and Whitak-
er (1989) extended Barlow and Brunk’s estimation
to multivariate distributions under stochastic order-
ing. They considered both one-sample and two-
sample estimation problems also. Dykstra (1982)
considered the problem of finding maximum likeli-
hood estimates of stochastically ordered survival
functions for both one-sample and two-sample cas-
es. Feltz and Dykstra (1985) found the maximum
likelihood estimators of N survival functions that
satisfy linear stochastic ordering. Dykstra and
Feltz(1989) extended the above result and dis-
cussed estimation of survival functions under an
arbitrary partial stochastic ordering.
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However, in some applications, the distribu-
tions associated with p and q may not only satisfy
the stochastically ordered constraints but also the
equality of some of their parameters. For instance,
drug A may have the same effect in relieving the
headache as drug B in the first time period after
taking. But the effect of drug A cannot compete
with drug B after the first time period. Hence, to
estimate the effect of drug A and B, it is required
to add additional equality restrictions to the
stochastic ordering. In this paper, we generalize this
type of restrictions as follows:

Maximum

We consider one-sample problem first. As-
sume q is known and a random sample of size m
from the population associated with p is taken. Let
p= (P, D2, ..., D) be the vector of relative fre-
quencies; i.e,, mp has a multinomial distribution
with parameters m and p. The following theorem
supplies the maximum likelihood estimates of p
subject to the restriction of H. For simplicity, de-
fine A" ={7,, 7,, .., 7.} hereafter. Let g = (g1, g2,
., Zi¢) be any fixed vector, w = (w,, ws, ..., W) be
a positive weight vector, and C be a closed convex
set in R¥. The notation P,(g|C) represents the
least squares projection of g onto the collection C
with weight w; i.e., it is the solution to the follow-
ing problem

minimize ¥ [g; — £:]? w; subject to £ € C,

where f=(f,, f,, ..., f,). For x, y € R¥, we also use
x-y and x/y to prepresent (X1Y1, Xz2Yz, - Xc¥x)
and (X,/y1, X2/Yz, ..., X /yi) respectively.
Theorem 2.1 Suppose q is known and p, >0, V i=
1, 2, .., k; k>1. Then, the maximum likelihood es-
timate (m.l.e.) of p subject to H is given by

P =D P3(/BlCw),
where

Cuh = {(x1, Xz, ..., Xe)) ER*: x; 2 x;, when 1< i<j
<kandi jZAr}.

Proof. The m.Le. of p is p which is the vector that

maximize % (Pi In p;), subject to H

& The vector that minimize — 5 (i In pi), sub-
jectto H
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H:p>qand p;=q;, Vij=7, 7, .., 7,

where 7,, 7,, .., 7. are the integers between 1
and k. In Section 2, we solve the maximum likeli-
hood estimation problem under the modified hy-
pothesis, H, by following Barlow and Brunk’s
method (1972). We discussed both one-sample and
two-sample problems and obtain the Fenchel duali-
ty projection-type maximum likelihood estimates. In
addition, the consistency of the estimates is dis-
cussed in Section 3. Far illustration, we give a real
example in Section 4.

likelihood estimates

& The vector that
minimize — kZl (Pu; Inpuy), + [ —gA,(ﬁi In Pi)]’

subject to H, where 1<u;<u,<..<u,.<k and u;,
Uz, .. uk.,EAr. Let pr=(p“l , p“z 5 seey puk—r )
Under H,

(-2.Gmp))=(-2,0 nq)]

is known. The above minimization problem is
equivalent to

minimize — kZ‘ (Pu; Inpu;).
This is equivalent to
minimize — le ®.; In -g&). o))

we define

W= (W, W5, oy Whe) = By, Pus oo D, ) B
Q"= (qu,> Qu;» = Qu, )s

P'= (Pu,s Puys o Pu, )

T r r r - p“l p“z p“k-r __E
§ = (81,82, vers S4) = (> A~ > oA )T Ar s
( 1 : ‘ ) (pu‘ p“z p“k-r ) p
r = I or r = 9, 9 Quur =_9_r
4 (gl, g2, < gk-r) (ﬁul » ﬁ“z L] ﬁuk., ) pr >

and ® (y) = - In (y). Thus, we can rewrite (1) as
minimize fﬁ;‘;(wir @ (sf)) 2)

and the corresponding restriction H as

i%w{(g{-si’) <0, 1< j<kr, andgwi‘(g{-sf)=0.

The Fenchel dual, C*™¥, of

Cr={(Xy,, Xu;» - Xu,, ) ER* 1 x,, Z x,, when 1
<i<j < k1}
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is
C™={u";(u,v)L<0, VveC}
={u; Suwi< 0, ¥V 1<j<ker, 3 uiwi=0}
(cf. Robertson et al.,, 1988, page 50). Thus (2) be-
comes .
minimize Z (w; ® (s{)) subject to g*-s*€C"™.
Refer to the corollary on page 48 of Robertson et
al.,, 1988, we have the m.l.e. of s* and p* as
s'=Py(g’|C"),
P =P - 57=p" - Py(q/P'IC),
and
So, Pi=q;, jEA"
Dy, =D, ' Py (q*/p°ICT)i, where i=1, .., k-r
Pi=q: i€AT
The remaining work is to show that (3) is the same
as p=p Py (q/p/ C())). We see that when q/p pro-
ject onto C,, the 7,th, 7,th, ..., 7,th terms will
be singletons (i.e., these terms will not amalgamate
* with any other terms through the least square pro-
jection). Refer to Theorem 1.4.2, Theorem 1.4.4,
and Theorem 1.4.5 of Robertson et al., 1988, we
have

Pn.=Pn, - C]ni/ﬁn,=qn,, Yi=1, .,r
and the other terms are derived by multiplying p*
with the projection of q'/p* onto C*. Thus (3) is
the same as

p=p- P; (@/PICw))-

This completes the proof.

In two-sample problem, assume both p and q
are unknown. In addition to P, let § denote the
vector of relative frequencies of a sample of size n
from the q population and assume that p and q are
independent. Let S=m+n and we denote the m.le.
of (p,q) under H as (p,q). To derive the m.Le. of p
and q under H, we need the following five lemmas.

Lemma 1 Suppose that , §;>0, V i=1, .., k and
2 pi=2q;=1. If there exist 7, 7,,..., 7. such that

Pi=qi, Yi= 7y, M, o 7, 4
where r € N, ris given, 1 <r < k-2, and 7, 7, ...,
7, are integers between 1 and k. If (p,q) maximize
the likelihood function subject to the above restric-
tion {4), then

)

+ng
Ep_q_v i= 771’ 172’ n

very T

P i |

Proof: Recall that A" ={7,, 7,, ..., 7.}. If A"={1, 2,

., k}, the result holds trivially. Hence, assume A*
+ { ", M, .., 7.} and let u,, be the largest index
in {1, 2, s K} \ A", so the log-likelihood function
L(p.g)= 2 (mP: In p;+n§ In q;)
= 2 (mp; Inp;+nG In g, )+ 2(mp,+nq.)
VEA U g o

In pi+(mp,,, Inp,,, +nG,,, Ing,,.
So, L attains its maximum iff

ZL .

a—pi=0 iZ AU {u..}
L .

—gai—= iZ AU {u.}

JL .

—_—= e A"

P, '

Since (p,q) maximize the likelihood function, (p,q)
satisfies the following equivalent equations

mp_ mp, i ZAT
p i p Vier
ngi - Ilgu..x iZA"
qi q Uy
mpl_:l- ng; - irlpuk-r + nqu,, iEA",
p i p Uy, q Ug.r
This implies
&£ Afmpi = mﬁ“x-r
.EERr Pi Pu.
1EZA’nqi = n/c\l‘hx
AEZA' q i q Sir
and
&P + g _ mp.,, + N,
|E2A' ﬁi r) Vgr q Yir

Thus, we have

& mp; +ng; ) 2 mp; +‘E§‘.~ni
iQZA’I:)i EZ p |EZA'qi

Since ﬁi=qi’ Vi€EArand I_Zji=l§_)lqi, EZA’ ﬁi =
EEAﬁi. Hence, the above equation can be rewritten
as

 2.mp; +nq, _ 2.mp; +ng;
é.«' ﬁi & A r)'
) Ieﬂmﬁ,+n'c\], +.52Ar mp; +ng;
E af IN)' + .Ez;\f ijl
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| ‘EZA’mpi +ng;
=y S
On the other hand,

mpi+nG _ mpy, | M. yiear
p i p Uge q Yir
Thus,
Pi_ mp+ng

e PY0G v jeA.
p; mp;+nq

So. f)i=in-9i§tn—ch, Y i€Ar". This completes the
proof.

Lemma 2 Suppose that p;, §;>0, V i=1,2,..k and
that both p and q are unknown. Let (p,q) be the
maximum likelihood estimator of (p,q) under the
condition of H and (p,q) be the m.lLe. of (p,q) un-
der the COl’ldlthl’l that pi=q;, V i € A" respectively.
If Zp, > Zq, Y 1< j<k, the (p,q)=(p.q)-

Proof: Suppose that (p,q) * (p,q). Consider the
function h, defined on [0,1] by h(x)=L(A(p,q) +(1-
A)(p,q)). Since h is concave on [0,1],

)e 3 —mPi(pi-p)? -, (q:-q:)°
W5 +10p T Ra +10g ]
and (p,q) * (p.q), L is increasing along the direc-
tion from (p,q) to (p.q). On the other hand, (p.q)
is the m.Le. of (p,q) subject to less constraints, so
h(1)=L(p,q) = L(p,q) =h(0). Because, h increase
strictly at A =0, there exists a A,€ (0,1) such that
h(10)>h(0)=L(p,q) and

3 (Lop . +(1-40)p.) 2 2('1oq +(1-10)q.),
for j=1,...,k-1. Furthermore, A,p; +(1-1)pi =4,q;
+(1-40)q;, Y i€ A" Hence, 1,(p,q)+(1-20)(P,q)
satisfies H condition and

L(A0(p,q)+(1-40)(P.q)) >L(P.9)-

This result contradicts with the assumption that (p,
q) is the m.Le. of (p,q) under condition H, so (p,q)
=(p.q). This completes the proof.

The following lemma is an extension of Lem-
ma 1, but it is proved in a different way.

<0)

Lemma 3 Suppose that P;, § >0, V i=1,..k and 2:
pi= Ek] qi =1. There exist A*={7,, 7,,.., 7,} and AS®
={j1,j2,...,js}, j1 <...<js such that

pi=qi, Vi€ A" and gpi=§llQi, Y j EA-. ®)
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Note that j, =k. If (p,q) maximize the likelihood
function subject to the above restriction (5), then

pi=q,="hc T Vi €A and £ b= £, i €A

Proof: Let B, ={1,...,j1}, B:={j1 + 1.,z }re0sBs = {j s
+1,...js }. We see that

é,pi =§:Qi, Y i EA®
is equivalent to

EZ Pi 2 qi, Vt=12,.5.
We prove the result by using the Lagrange Multi-
pliers. Let

F(p,q,l,6,6)=émﬁi In pi+|§:n'qi In qﬁl(épi-l)

+8p, (Pn, -9n,)
+ﬁs(-§npi--ciqi)'

+dfh (pm 'Qm )+
+/31(‘§ﬁpi'iezﬁ%)+“'

Taking the partial derivative of Foverp ,q , A, ¢
and B respectively and setting them equal to zero,
we have

ap —P—+A+a B, =
PP if iEB,NA’
OF _ng B =
aq‘ q: t
25 mws ~0
oPi P if i EB,\A*
L
Yodi oqi
‘lepi-],:O
pi-q: =0, ViEA"
eﬂp--EZqu. =0, Vists<s

If (p,q) solve the above equations, after simplifica-
tion, we have

m2ﬁ1+n2’c\]i

S AT =y
2 P

S A

=-A,
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b}

Since ¥ pi=2q:, 5 pi=_5 qi. We have - 4

+ S #Z B\AT i€ BAT
=m+n=S.
Moreover
mp; +ng;
f)i=“l=_%_9'_’ YV i EAT
and

m Zf);+n Za;

2 [N)iz L o = 2 qi, V I1st<s
i€ B\AT S [=3:8V
Hence
Ezf)'_ qu,VJ‘EAS
and

3pi=34q, VjEA"

This completes the proof.
In Lemma 4, A* and A® are defined the same way
as in Lemma 3.

Lemma 4 Suppose that P, ¢ >0, V i=1,2,...k and
that both p and q are unknown. Let (p,q) be the
maximum likelihoodestimator of (p,q) under the
condition of H and (p,q) be the m.le. of (p,q) un-
der the condition that

pi=q, Yi€A" and épi=§‘]qi, Vi €A
If $p.>3q., ¥ jEA®, then (p,q)=(5.4).

Proof: The proof is similar to the proof of Lemma
2.

Lemma 5 Suppose that p;, §;>0, ¥ i=12,...k and
that both p and q are unknown. Let (p,q), be the
maximum likelihood estimator of (p,q) under the
condition of H. Then,

i 2 mf)i+nﬁi i
2pi= —S——k,;qi, Vj=12..k
and ﬁizqizﬂl&sﬂ V i: 7]1’772”"’ .-

Proof: Depending on the number of inequalities,
A TES LY

that hold strictly
follqws. ]
(i) 2pi>2q;, V1sj<k.

, there are two possible cases as

(ii) There exists WC{I, ,k 1} such that?.p >2q,,
V;EWande, Zq., jE€ {1,2,...k}\W.

In case (i), by Lemma 1 and Lemma 2,
pi=q =TE T v €A ®

In case (ii), by Lemma 3 and Lemma 4, equation
(6) holds too.
Let Lo=2 (mp; In p; +nG In q;), then the log-
likelihood

L(p.q)=Lo +EZAr (mp; In p;+nG In q;).

Thus, (p*,q") (Here, p* =(Pu, ,-,Pu,, ) and q* =(qu,
,squ,, ) Must maximize L, under the condition

H,: ilp‘ = ilqi, for j=1,...k-1.

Hence, equivalently, (p*,q") maximize

A ﬁl pi
2 {m(2p) o ()
Enr =
+n(é’\1)'zl'ln<——q')}
Ear 4 & i
under the condition that
D sl T N X

Then, by lemma on page 251 of Robertson et
al.1988,

3P
=u i;lpl
m (5p) - B (33) - 2
(£3) (%3]
; uj
m:‘i:p, +n l%{l’c\],
>34
Za.
for j=1,...,k-1. On the other hand, it is easy to see
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Smpo+nd ‘
—S———Z 2q;, for j=12,..kr. N

I.J pi=
Combining the results of (6) and (7), we have

i§J‘mf)i +ng, |
—S—Z l).l qi, for j= 1,2,...k.

M-

pi=

=1

This completes the proof.

Theorem 2.2 If p,, G >0, i=1,2,...,k and k>1, then
the maximum likelihood estimate of (p,q) under H
is

(p.q)=wP.(hB)
where
w=(mp,,....mpP,,nGs,...,nG )
h= mﬁ1 +n’q1 mﬁk +nak mﬁl +rl€11

Smﬁl e Smf)k Snfh

mﬁk + n/qk
Yeees Sn'qk
and

B ={(x1,X2,.X%,) ER™: x; = x;, when 1< igj
< kand ijZA"; x; < x;, when k+1<i<j<
2k and i,j £A¥}.

. +nd;

Proof: By Lemma 5, we have p; =qiﬂ%l-, Vie

A’. Hence, our maximum likelihood estimation
problem become maximizing

L(p.9)=2Z (mp: In p;+nG In q;)
+é (mpi In pi+nq In q;)
under H condition and 2 (mpi In p;+ng In q)) is

a given number. Let
t'Zr - ( pu| Euk-r qul quk.r )

R ey — 2
mp,, " Mpy,, 0Py, 7 NQu,,
2r A A n ~
w* =( mpPy ., MPu,,, NG5 Nay,)

A A N A
h 2r mp”l + nqu| mp”k~r + nq“k-r
- ~ PR A >

Smp,, Smp..,

N A A A

mp,, + ng,, mp,, + ng.,.,
A yoory A
Sng., Snqu..
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and @ (y)=-In (y). Then, equivalently, (p*,q")
solves the following optimization problem:

2r
minimize 2 w{" ® (t)
subject to

S wi(h¥ A7) < 0, j=1,..kr-1.

kg)ﬂwizr(hizf-tizf) = 0, j=1,...,k—r—l,

and

Jwh(h¥t¥)=0= 3 wir(h¥t¥),

kr

These restrictions are equivalent to h*t*&B*™,
where B*™ is the Fenchel dual of B* and

— 2k-2r .
B2r —{(Xl,...,xk.r, xk.Hl,...,XZk.z,-) & R¥x.

X > X2 =z .= Xpr  Xkr+1 < X k-r+2 SN sz.zr}.

By the theorem of Robertson et al., 1988 on page
50, we have

(ﬁ r,q r)=w2r . Pwh(hzr ' BZr).
Combining with the result that

p.=q, =P NG i;“ L Y ieAr

we have
(p.g)=wP. - (hiB).

(see the reason we gave in Theorem 2.1.) Separat-
ing B,into two parts with the first k coordinates in
the first part and the others in the second part, we
can compute p and q independently as follows

P=(W1,Wa,...Wi)* Puiwawio((h1,h2,....h ) IC ),
and

q= (Wk+1 ,Wk+27--',w2k)

'(-P(wk+1,wk+2 ..... wlk)('(hk+1yhk+2,u~yh2k) c(r))))'

This completes the proof.

The Asymptotic Properties

As we know, the unconstrained maximum like-
lihood estimators, p and § converge almost surely
to p and q for both one- and two-sample cases re-
spectively. Applying this fact, we prove that the
constrained maximum likelihood estimators we de-
rived in the previous section also preserve the de-
sired consistency property.

Theorem 3.1 As m —~o0, p converges almost sure-
ly to p provided p>>q and p;=q,, foriE A",
Proof: By the strong law of large numbers, p~p a.s.
as m —oo , Furthermore, P, (X|C,) is continuous
in both w and X so that p—~p - P,(q/p|Cw) a.s.
Using the maximum upper sets algorithm (cf.
Robertson et. al. 1988 on page 25) to compute p *
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P,(q/p|C), those terms with indices belonging to
A" form a level set so we only need to consider
the other k-r terms. Refer to the equation on page
18 of Robertson et al., 1988, we have

i‘s::]lq“i

AV((u1,uz,..u)) def

Y

gp“i

<1,

for 1< j<k-r and the equality holds for j=k-r.
Hence, the maximum upper set is {u;,u,,..,us,}
and Py(q/p|C)=1. Since p~p * P,(q/p|Cy),
thus p,, —~ p., j=1,...k-r. In addition, to satisfy the
assumption that p; =q; for jE A", thus p;=p;=q;,
forj€A'. Hence, p—p. This completes the
proof.

Theorem 3.2 Suppose that p>>q and p; =q;, for i
& A7, then

Pl Jin6o-Go)
Proof: Since P, (g+d|C)=P.(g|Cy)+ds, for

any k dimensional constant vector d, =(d,d,...d), it
follows from Theorem 2.2 that

( ﬁ*@ |cm>

=1.

P-p=pP;

and
q-G=-qPy (—_gggllcu)) .

By the strong law of large numbers, P{lim ,, 00 (B
@=(p,9)}=1. Since (n/S)p and (m/S)§ are bound-
ed by 0 and 1 (The bound still holds as m and n —
oo simultaneously) and P, (X|C) is continuous in
X and w, we only need to show that

P, ( %P_lcm) P, ( %Cm) =0 ®

or equivalently
P, ( _g_|c(r)) =P, ( --C;L|C(,)) =ey, (8

where e, is the k-dimensional vector of ones. By
the assumption,

AV((u;,uz,..,u;)) < 1, for 1 < j<kr
and the equality holds for j=k-r. Then by the smae
argument as that of Theorem 3.1,

P, [ dc,) =
p( pl ()) €
follows easily and
P, | e, ) =-
q( q| ()> €

can also be established similarly. This completes
the proof.

An Example

It is believed that political ideology are differ-
ent by gender. Table 1, taken from the 1991 US
General Social Survey (cf. Agresti (1996) page 203),
shows the political ideology of Democratic affilia-
tion in five levels (very liberal, slightly liberal,
moderate, slightly conservative, and very conserva-
tive), stratified by gender. For simplicity, we denote

this five level of political ideology as 1, 2, ..., 5. Let
p: (qi) be the proportion of male (female) with
political ideology level i, i=1, 2, ..., 5. If we know
that male tends to be more liberal and female
tends to be more conservative, a natural constraint
isZ 1, piz 214, giforj=1, .., 5.

Table 1 The political ideology of Democratic affiliation stratified by gender.

Political Ideology of democratic Party

Very Slightly Slightly Very
Gender Liberal Liberal Moderate Conservative Conservtive
Male 36 34 53 18 23
Female 44 47 118 23 32
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If we believe that about the same proportion
of two genders tends to be moderate in the politi-
cal ideology. We might consider the constraint

H: gpi = ,i,CIi for j=1,..,5 and p; =q;.
In Table 2, P (§ is the unrestricted m.le. of p(q); p*

Hsiao-Chuan Lu

(q*) is the m.Le. of p(q) subject to the regular
stochastic order p>>q; p"(q") is the m.l.e. of p(q)
subject to the constraint H; fit' is the estimated
frequency subject to usual stochastic order; fit? is

the estimated frequency subject to the constraint H.

Table 2 Estimates for the political ideology data.

fit ! fit?
m n m n m n P 4@ p ¢ p* !
36 4 3723 43.11 31.94 4777 22 17 23 .16 .19 .18
34 47 3517 46.05 30.16 51.03 21 18 21 17 .18 .19
53 118 54.82 115.62 65.52 105.48 32 45 33 44 40 40
18 23 16.15 24.76 15.97 2497 A1 .09 10 .09 .10 .09
23 32 20.64 34.45 20.41 34.75 14 12 13 13 12 13
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