1 Preliminary

We denote by K a field and by K[X] the polynomial ring over K in n variables Xi,..., X,.
For o = (ay,...,0a;,) € N™ we abbreviate X" X352 --- X% by X% and we call X* a power
product.

Definition 1.1. A term order (or a term ordering or even a monomial ordering) on K[X] is
any relation < on N" satisfying :

(1) < is a total (or linear) ordering on N™.

(2) Ifa<pfandy€ N" thena+vy<f+7.

(3) < is a well-ordering on N”. This means that every nonempty subset of N™ has a

smallest element under < .

For a simple example of a term order, note that the usual numerical order
I0<l<2<3<---<m<m+1<---
on the elements of N satisfies the three conditions of Definition 1.1. Hence, the degree ordering
l<zr<a’<--<agm<ag™t<...

on the monomials in K[X] is a term order.

Definition 1.2. (Lexicographic Order) For a = (ay,...,ay), B = (B1,-..,0,) € N we define

a <jep f <= there is a je€{1,2,...,n} suchthat a, =0 if k <j and a; < f;.

Example 1 : (0,2,0) <z (1,0,0) <jer (1,0, 1).

With »°, co X or > cnn
coefficients ¢, are different from zero. If f =) ¢, X“ is a polynomial in K[X] and we have

coa X we always tacitly mean that only finitely many of the

selected a term order <, then we can order the monomials of f in an unambiguous way with
respect to <. For example, let f = 4dxy?z + 42% — 523 + Tw?2% € K[z, y, 2]. Then with respect

to the lex order, we would reorder the terms of f in decreasing order as
= =52 4+ 7022% + dwy’z + 42%

We will use the following terminology.



Definition 1.3. Let f = > ¢, X be a nonzero polynomial in K[X] and let < be a term
order.
(1) The degree of f is

deg(f) :==mazx{a€ N"|c, #0}.
(2) The leading coefficient of f is
le(f) = Caeg(s) -
(3) The leading monomial of f is
Im(f) = X9,
(4) The leading term of f is

l(f) == le(f) - Im(f) -

Example 2 : Let f = 4xy?z + 42° — 52 + Ta?2? and let < denote the lex order. Then

deg(f) = (3,0,0), le(f) = =5, Im(f) =% It(f) = -5z

For a subset F' C K[X] we define
deg(F):={deg(f)| fe F—{0}}, D(F):=deg(F)+N" and

LT(F) = { 1t(f) | f € F {0} }.

Let us firstly look at the special case of the division of f by g, where f, g € K[X]. We fix a
term order on K[X].

Definition 1.4. Given f, g, h in K[X], with g # 0, we say that f reduces to h modulo g in one

step, written

f—=h,
if and only if Im(g) divides Ilt(f) and
lt(f)
h=f— .
"=y



Example 3 : Let f = 62%y —x + 4y®> — 1 and g = 22y + y> be polynomials in Q|x,y]. If the
term order is lex order with y < z, then f -2 h, where h = —3zy® — z + 4y* — 1, since, in this

case [t(f) = 62%y is the term of f we have canceled using It(g) = 2zy.

In the multivariable case we may have to divide by more than one polynomial at a time,

and so we extend the process of reduction defined above to include this more general setting.

Definition 1.5. Let f, h, and fi,..., fs be polynomials in K[X], with f; # 0 (1 <i < s), and
let F'={f1,...,fs}. Wesay that f reduces to h modulo F', denoted

f i>Jr h7
if and only if there exist a sequence of indices i1, iz, ..., i; € {1,2,...,s} and a sequence of
polynomials hy, ..., hy_; € K[X] such that
N WL N . N N NN

Definition 1.6. A polynomial r is called reduced with respect to a set of non-zero polynomials
F={f1,...,fs} if r =0 or no power product that appears in r is divisible by any one of the

Im(fi),i=1,2,...,s. In other words, r cannot be reduced modulo F.

Definition 1.7. Fix a term order and let I be an ideal in K[X], I # {0}. A finite subset G of
I — {0} is a Grobner basis of I <= LT(G) generates the ideal < LT(I) > .

Definition 1.8. Let 0 # f,g € K[X], and let L = lcm(lm(f), lm(g)). The polynomial

L L

SU9)= 7y T

9

is called the S-polynomial of f and g .

Example 4 : Let f =2yx —vy, g = 3y*> —x € Q[z,y|. If the term order is lex order with z < y,

21’ 293
then L = y’z, and S(f,9) = 45 f— 47 9= 3yf — 529 = —39° + 32°.




Algorithm 1.9. ( Buchberger’s Algorithm for Computing Grébner Bases )

INPUT : F={fi,.... .} CK[X]with f 20 (1 <i < s)
OUTPUT : G ={g1,-..,9:}, a Grobner basis for < fi,..., fs >
INITIALIZATION : G :=F, G:={{fi,f;} | f; # f; € G}
WHILE G#0 DO
Choose any {f,g} € G

S(f,9) inr h, where h is reduced with respect to G
IF h#0 THEN

G :=GU{{u,h}|for allue G}
G:=GU{h}

Example 5 : Let fi = 2y —z, fo =
x <.
INITIALIZATION : G :={fi, o}, G :={{f1, f}}
First pass through the WHILE loop
G.=0
S(f1, f2) S Bz =h ( reduced with respect to G )
Since h # 0, let f3:= 2% —x
G = {{fi. s}.{fo. fs}}

—y + 2% € Q|x,y] ordered by the lex term ordering with

G:= {f17f27f3}
Second pass through the WHILE loop
g = {{f27f3}}

S(fi.fs) —4 0=h
Third pass through the WHILE loop
G:=0
S(farfs) ~4 0=h
The WHILE loop stops, since G := 0 .
Thus, {f1, f2, f3} is a Grobner basis for the ideal < fi, fo > .

Definition 1.10. Let [ be an ideal of K[X]. The initial ideal of I for the term order < is the
ideal

inc(I) = (X |for all « € D(I)) .

The ideal in.(I) is highly dependent on the chosen ordering ; once < is fixed, the ideal is
denoted simply by in(l) .



Let us fix, for our discussion, a term order which we denote simply by <. Let § =
{X*+1I|a¢ D(I)}, where I is a non-zero ideal in K[X]. We are going to show that S is
a basis for the K-vector space K[X]/ I.

We first show that every element f + I in K[X]/ I is a linear combination of S. Let
f=>"_cs X% € K[X], and we may assume that By < 31 < 2 < -+ < 3, := deg(f).
Let [y =max{i | Bie D), 0<i<r}.
If Iy =0, then obviously, f + I is a linear combination of S.

Suppose [; > 0. Since 3, € D(I), there exists a non-zero polynomial g; € I such that

B, = deg(g1) and [t(g1) = cﬁllXﬁll :
Let hy=f—g¢,. Then f+1=h;+1.
Write hy =3 ,d,, X" € K[X].
Again, let Iy =maz{i | € D(I), 0<i<s }.
If I, =0, then hy+ [ is a linear combination of S, sois f + I.

Suppose Iy > 0. Since v, € D(I), there exists a non-zero polynomial g € I such that
Vi, = deg(ge) and [t(g2) = d,,, X2 .

Let hg =hy—¢gs. Then f+I1=hy+1=hy+ 1.

Doing the same thing on hy and keeping going, we will get that f + [ is a linear combination
of S.

Next, we show that S is a linearly independent subset of K[X]/ I. Let Y " aq,(X*+1) =
I, where X* +1€S and ag<a; <--- <ay,. Then Y ", a,X* € 1.

If ag, #0, then a,, € D(I), a contradiction. So, a,,, =0 and 3.7 ' a., X% € I.
If g, , #0, then a,, ; € D(I), a contradiction. So, a,,, , =0 and 3.7 ?a., X% € I.
Continuing in the same way, we get that a,,, =aq,, , = = aq, = 0.

Therefore, S is a basis for the K-vector space K[X]/ I.

Definition 1.11. For a given f € K[X], the unique polynomial
NormalForm(f) = Z ca X,
where each a ¢ D(I), such that
f— NormalForm(f) € I,

is called the normal form of f with respect to the chosen ordering.



Lemma 1.1. Let I be an ideal of K[X]. Then the mapping
NormalForm : K[X]/I — K[X]/in(I)
s an isomorphism of K -vector spaces.
Proof : Define
NormalForm : K[X]/I —  K[X]/in(I)
f+1 — NormalForm(f) + in(I)

Since {X*+ 1 |a ¢ D(I)} is a basis of the K-vector space K[X]/ I, clearly, NormalForm is
well-defined, epimorphism, and ker(NormalForm) = { I }.

Therefore, K[X]/ I ~ K[X]/in(I) . O



