1 Preliminary

We denote by K a field and by K[X] the polynomial ring over K in n variables X_1, \ldots, X_n . For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbf{N}^n$ we abbreviate $X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n}$ by X^{α} , and we call X^{α} a power product.

Definition 1.1. A term order (or a term ordering or even a monomial ordering) on K[X] is any relation < on \mathbb{N}^n satisfying :

- (1) < is a total (or linear) ordering on \mathbf{N}^n .
- (2) If $\alpha < \beta$ and $\gamma \in \mathbf{N}^n$, then $\alpha + \gamma < \beta + \gamma$.
- (3) < is a well-ordering on \mathbb{N}^n . This means that every nonempty subset of \mathbb{N}^n has a smallest element under < .

For a simple example of a term order, note that the usual numerical order

$$0 < 1 < 2 < 3 < \dots < m < m + 1 < \dots$$

on the elements of N satisfies the three conditions of Definition 1.1. Hence, the degree ordering

$$1 < x < x^2 < \dots < x^m < x^{m+1} < \dots$$

on the monomials in K[X] is a term order.

Definition 1.2. (Lexicographic Order) For $\alpha = (\alpha_1, \dots, \alpha_n)$, $\beta = (\beta_1, \dots, \beta_n) \in \mathbf{N}^n$ we define $\alpha <_{lex} \beta \iff$ there is a $j \in \{1, 2, \dots, n\}$ such that $\alpha_k = \beta_k$ if k < j and $\alpha_j < \beta_j$.

Example 1: $(0,2,0) <_{lex} (1,0,0) <_{lex} (1,0,1)$.

With $\sum_{\alpha} c_{\alpha} X^{\alpha}$ or $\sum_{\alpha \in N^n} c_{\alpha} X^{\alpha}$ we always tacitly mean that only finitely many of the coefficients c_{α} are different from zero. If $f = \sum_{\alpha} c_{\alpha} X^{\alpha}$ is a polynomial in K[X] and we have selected a term order <, then we can order the monomials of f in an unambiguous way with respect to <. For example, let $f = 4xy^2z + 4z^2 - 5x^3 + 7x^2z^2 \in K[x, y, z]$. Then with respect to the lex order, we would reorder the terms of f in decreasing order as

$$f = -5x^3 + 7x^2z^2 + 4xy^2z + 4z^2.$$

We will use the following terminology.

Definition 1.3. Let $f = \sum_{\alpha} c_{\alpha} X^{\alpha}$ be a nonzero polynomial in K[X] and let < be a term order.

(1) The degree of f is

$$deg(f) := max \{ \alpha \in N^n \mid c_{\alpha} \neq 0 \}.$$

(2) The leading coefficient of f is

$$lc(f) := c_{deq(f)}$$
.

(3) The leading monomial of f is

$$lm(f) := X^{deg(f)}$$
.

(4) The leading term of f is

$$lt(f) := lc(f) \cdot lm(f)$$
.

Example 2: Let $f = 4xy^2z + 4z^2 - 5x^3 + 7x^2z^2$ and let < denote the lex order. Then

$$deg(f) = (3,0,0), \quad lc(f) = -5, \quad lm(f) = x^3, \quad lt(f) = -5x^3.$$

For a subset $F \subseteq K[X]$ we define

$$deg(F) := \{ deg(f) \mid f \in F - \{0\} \}, \quad D(F) := deg(F) + \mathbf{N}^n \quad \text{and} \quad LT(F) := \{ lt(f) \mid f \in F - \{0\} \}.$$

Let us firstly look at the special case of the division of f by g, where $f, g \in K[X]$. We fix a term order on K[X].

Definition 1.4. Given f, g, h in K[X], with $g \neq 0$, we say that f reduces to h modulo g in one step, written

$$f \stackrel{g}{\longrightarrow} h$$
,

if and only if lm(g) divides lt(f) and

$$h = f - \frac{lt(f)}{lt(g)} g.$$

Example 3: Let $f = 6x^2y - x + 4y^3 - 1$ and $g = 2xy + y^3$ be polynomials in Q[x, y]. If the term order is lex order with y < x, then $f \xrightarrow{g} h$, where $h = -3xy^3 - x + 4y^3 - 1$, since, in this case $lt(f) = 6x^2y$ is the term of f we have canceled using lt(g) = 2xy.

In the multivariable case we may have to divide by more than one polynomial at a time, and so we extend the process of reduction defined above to include this more general setting.

Definition 1.5. Let f, h, and f_1, \ldots, f_s be polynomials in K[X], with $f_i \neq 0$ $(1 \leq i \leq s)$, and let $F = \{f_1, \ldots, f_s\}$. We say that f reduces to h modulo F, denoted

$$f \xrightarrow{F} h$$

if and only if there exist a sequence of indices $i_1, i_2, \ldots, i_t \in \{1, 2, \ldots, s\}$ and a sequence of polynomials $h_1, \ldots, h_{t-1} \in K[X]$ such that

$$f \xrightarrow{f_{i_1}} h_1 \xrightarrow{f_{i_2}} h_2 \xrightarrow{f_{i_3}} \cdots \xrightarrow{f_{i_{t-1}}} h_{t-1} \xrightarrow{f_{i_t}} h$$
.

Definition 1.6. A polynomial r is called reduced with respect to a set of non-zero polynomials $F = \{f_1, \ldots, f_s\}$ if r = 0 or no power product that appears in r is divisible by any one of the $lm(f_i)$, $i = 1, 2, \ldots, s$. In other words, r cannot be reduced modulo F.

Definition 1.7. Fix a term order and let I be an ideal in K[X], $I \neq \{0\}$. A finite subset G of $I - \{0\}$ is a Gröbner basis of $I \iff LT(G)$ generates the ideal $\langle LT(I) \rangle$.

Definition 1.8. Let $0 \neq f, g \in K[X]$, and let L = lcm(lm(f), lm(g)). The polynomial

$$S(f,g) = \frac{L}{lt(f)} f - \frac{L}{lt(g)} g$$

is called the S-polynomial of f and g.

Example 4: Let f = 2yx - y, $g = 3y^2 - x \in \mathbf{Q}[x, y]$. If the term order is lex order with x < y, then $L = y^2x$, and $S(f, g) = \frac{y^2x}{2yx}$ $f - \frac{y^2x}{3y^2}$ $g = \frac{1}{2}yf - \frac{1}{3}xg = -\frac{1}{2}y^2 + \frac{1}{3}x^2$.

Algorithm 1.9. (Buchberger's Algorithm for Computing Gröbner Bases)

INPUT:
$$F = \{f_1, \dots, f_s\} \subseteq K[X]$$
 with $f_i \neq 0 \ (1 \leq i \leq s)$
OUTPUT: $G = \{g_1, \dots, g_t\}$, a Gröbner basis for $< f_1, \dots, f_s > INITIALIZATION$: $G := F$, $\mathcal{G} := \{\{f_i, f_j\} \mid f_i \neq f_j \in G\}$
WHILE $\mathcal{G} \neq \emptyset$ DO
Choose any $\{f, g\} \in G$
 $\mathcal{G} := \mathcal{G} - \{\{f, g\}\}\}$
 $S(f, g) \xrightarrow{G}_+ h$, where h is reduced with respect to G
IF $h \neq 0$ THEN
 $\mathcal{G} := \mathcal{G} \cup \{\{u, h\} \mid \text{for all } u \in G\}$
 $G := G \cup \{h\}$

Example 5: Let $f_1 = xy - x$, $f_2 = -y + x^2 \in \mathbf{Q}[x, y]$ ordered by the lex term ordering with x < y.

INITIALIZATION:
$$G := \{f_1, f_2\}, \ \mathcal{G} := \{\{f_1, f_2\}\}$$

First pass through the WHILE loop

$$\mathcal{G} := \emptyset$$

$$S(f_1, f_2) \xrightarrow{G}_+ x^3 - x = h \text{ (reduced with respect to } G \text{)}$$
Since $h \neq 0$, let $f_3 := x^3 - x$

$$\mathcal{G} := \{\{f_1, f_3\}, \{f_2, f_3\}\}$$

$$G := \{f_1, f_2, f_3\}$$

Second pass through the WHILE loop

$$\mathcal{G} := \left\{ \{ f_2, f_3 \} \right\}$$

$$S(f_1, f_3) \xrightarrow{G}_+ 0 = h$$

Third pass through the WHILE loop

$$G := \emptyset$$

$$S(f_2, f_3) \xrightarrow{G} 0 = h$$

The WHILE loop stops, since $\mathcal{G} := \emptyset$.

Thus, $\{f_1, f_2, f_3\}$ is a Gröbner basis for the ideal $\langle f_1, f_2 \rangle$.

Definition 1.10. Let I be an ideal of K[X]. The initial ideal of I for the term order < is the ideal

$$in_{<}(I) = \langle X^{\alpha} \mid \text{for all } \alpha \in D(I) \rangle$$
.

The ideal $in_{<}(I)$ is highly dependent on the chosen ordering; once < is fixed, the ideal is denoted simply by in(I).

Let us fix, for our discussion, a term order which we denote simply by <. Let $S = \{X^{\alpha} + I \mid \alpha \notin D(I)\}$, where I is a non-zero ideal in K[X]. We are going to show that S is a basis for the K-vector space K[X] / I.

We first show that every element f + I in K[X] / I is a linear combination of S. Let $f = \sum_{i=0}^r c_{\beta_i} X^{\beta_i} \in K[X]$, and we may assume that $\beta_0 < \beta_1 < \beta_2 < \cdots < \beta_r := deg(f)$.

Let $l_1 = max \{ i \mid \beta_i \in D(I), 0 \le i \le r \}.$

If $l_1 = 0$, then obviously, f + I is a linear combination of S.

Suppose $l_1 > 0$. Since $\beta_{l_1} \in D(I)$, there exists a non-zero polynomial $g_1 \in I$ such that $\beta_{l_1} = deg(g_1)$ and $lt(g_1) = c_{\beta_{l_1}} X^{\beta_{l_1}}$.

Let $h_1 = f - g_1$. Then $f + I = h_1 + I$.

Write $h_1 = \sum_{i=0}^s d_{\gamma_i} X^{\gamma_i} \in K[X]$.

Again, let $l_2 = max \{ i \mid \gamma_i \in D(I), 0 \le i \le s \}.$

If $l_2 = 0$, then $h_1 + I$ is a linear combination of S, so is f + I.

Suppose $l_2>0$. Since $\gamma_{l_2}\in D(I)$, there exists a non-zero polynomial $g_2\in I$ such that $\gamma_{l_2}=deg(g_2)$ and $lt(g_2)=d_{\gamma_{l_2}}X^{\gamma_{l_2}}$.

Let
$$h_2 = h_1 - g_2$$
. Then $f + I = h_1 + I = h_2 + I$.

Doing the same thing on h_2 and keeping going, we will get that f + I is a linear combination of S.

Next, we show that S is a linearly independent subset of K[X]/I. Let $\sum_{i=0}^{m} a_{\alpha_i}(X^{\alpha_i}+I) = I$, where $X^{\alpha_i}+I \in S$ and $\alpha_0 < \alpha_1 < \cdots < \alpha_m$. Then $\sum_{i=0}^{m} a_{\alpha_i} X^{\alpha_i} \in I$.

If $a_{\alpha_m} \neq 0$, then $\alpha_m \in D(I)$, a contradiction. So, $a_{\alpha_m} = 0$ and $\sum_{i=0}^{m-1} a_{\alpha_i} X^{\alpha_i} \in I$.

If $a_{\alpha_{m-1}} \neq 0$, then $\alpha_{m-1} \in D(I)$, a contradiction. So, $a_{\alpha_{m-1}} = 0$ and $\sum_{i=0}^{m-2} a_{\alpha_i} X^{\alpha_i} \in I$.

Continuing in the same way, we get that $a_{\alpha_m} = a_{\alpha_{m-1}} = \cdots = a_{\alpha_0} = 0$.

Therefore, S is a basis for the K-vector space K[X]/I.

Definition 1.11. For a given $f \in K[X]$, the unique polynomial

$$NormalForm(f) = \sum c_{\alpha} X^{\alpha},$$

where each $\alpha \notin D(I)$, such that

$$f - NormalForm(f) \in I$$
,

is called the normal form of f with respect to the chosen ordering.

Lemma 1.1. Let I be an ideal of K[X]. Then the mapping

$$NormalForm : K[X] / I \longrightarrow K[X] / in(I)$$

is an isomorphism of K-vector spaces.

Proof: Define

$$\begin{array}{cccc} NormalForm \ : \ K[X] \, / \, I & \longrightarrow & K[X] \, / \, in(I) \\ & & & & \\ f+I & \longrightarrow & NormalForm(f)+in(I) \end{array}$$

Since $\{X^{\alpha} + I \mid \alpha \notin D(I)\}$ is a basis of the K-vector space K[X] / I, clearly, NormalForm is well-defined, epimorphism, and $ker(NormalForm) = \{I\}$.

Therefore,
$$K[X]/I \simeq K[X]/in(I)$$
.