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Abstract

The main purpose of this paper is to describe the optimal solution of Lights Out
games and other similar commutative puzzles. In 1998, Anderson and Feil used
Linear Algebra to find a solution method for Lights Out games. In 2009, Goldwasser
et al. proved the lit-only restriction is not different for the sigma game. In 2014,
Schicho and Top discussed many variation of Lights Out. Those results heavily rely
on computer. In this paper, we use mathematical methods to find an upper bound of

minimal solutions, and furthermore, give an estimation algorithm to the upper bound.






1. Introduction

Lights Out

A standard Lights Out puzzle game consists of a 5 x 5 grid of buttons which also
have light in them. Whenever a button is pressed, its light and the adjacent lights
would change, turn on if it was off, and vise versa. Given a pattern of lights, the goal
is to turn all the lights off by pressing the buttons.

There are various names of this puzzle, such as Button Madness, Fiver, Fliplt, Lights
Out, Magic Square, XL-25, Token Flip, and Orbix. The first electronic version of this
game was called XL-25, which was produced by Vulcan Electronics Ltd. in 1983. It
was invented by Laszl6 Mérd, who is a Hungarian research psychologist and popular

science writer.

Linear Solution

A Lights Out puzzle is commutative, in other words, the order of buttons pressed does
not affect its outcome. (See fig.1.) Therefore, any lights out puzzle pattern can be
solved by finding its linear solution, by simply solving linear equations. However, this

may not be the best solution that solves the pattern. This leads to a question: How do
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we find a solution which requires the minimal number of button pressed?

Fig.1. The result doesn't change whenever it goes from Ato B or from B to A.

Lie Algebra, Dynkin Diagram and Lit-Only Games

The original idea of the study to Lit-Only Games comes from Lie Algebra and
representation theory. The root system of simple Lie Algebra can be represented as on
the Finite Dynkin diagram (see fig.2.), with each point colored black or white. Two
root systems are categorized as the same type if one can be transformed to another,
with the rule very similar to Lights Out games, except that only the black points are
allowed to press. This leads to the study of Lit-Only ¢ games, which is the variation
of standard Lights Out game with the restriction that only the lit buttons can be
pressed. Josef Schicho and Jaap Top have proved that a Lit-Only game is solvable if
and only if the same situation can be solved without the Lit-Only restriction [3].

Hsin-Jung Wu has extended the results to some general graphs [2].



Fig.2. Finite Dynkin diagrams.

In Chapter 2, we will use some mathematical approaches to get the bounds of the
optimal solution on standard Lights Out games. The method can be extended to some
variation of Lights Out games, such as n-ary models, or even other commutative

puzzles. We will see this in Chapter 3 and 4.






2. The standard Lights Out

Standard Lights Out of n X n grids

Definition 2.1

We begin with some definition for n x n grids Lights Out Games, and note that the
following arithmetic only works in module 2. First, we give some notation of
position vectors and movement vectors.

Let [n] ={1,2,...,n}. Let Z, be the field consist only {0,1}.

The position vector b = (byy, byy, ..., bij, ...,bnn)T € 7}, by € Ly, i,j € [n].
The movement vector m;; = (@1, 12, v\ Qg e, Ann) " € 72, with

Llk—il+]l—-jl<1
O

0, otherwise ik, 1€ [n].

Then the movement matrix M = |my;mq, ... M5 ... My |.

The movement matrix records all the movement we do to the Lights Out buttons.

Clearly, col(M) = A is a subspace of Z’;Z.
If b e A then b is called solvable, otherwise unsolvable.

Whenever b € A, there exists a linear combination of m;; such that

b= Z Cijmij = Mc.

L,j€[n]

Then we can define the solution set of b:
T n2
I, = {c = (€11, C12) o) Cijy - Cn) |b = Mc} c 7y,
For each solution, we can calculate the moves, which is the number of nonzero entries

in module 2. Thus we define the function t: ZQZ - n?uU{0} by



7(0) = Z 1,

Cijio

and the best solution for each position vector b:

y, = min{t(c)|c € I},}.
Among all the solvable position vectors, we can get the best solution, i.e., the minimal
solution of Lights Out and denote by

y = max{y,|b € A}.

Example 2.2
Consider a 2 x 2 grids Lights Out game. There are four movement vectors,

m;;, m;,, m,;, m,, as follows (see fig.3.):

1 1 1 0
1 1 0 1
mi; = 1 ,y My = 0 y My = 1 y My, = 1/
0 1 1 1
P P
my, my,
P P
myq m;,;

Fig.3. On the left side, the "P" marks the button
pressed, and the right side shows the movement

affect to the grids.

Thus the movement matrix is
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1 1 1 0
11 0 1
M= 1 0 1 1
0 1 1 1
and the column space
1 1 1 0
_ 1 1 0 1 -
A = span 1o V1)l g =17,
0 1 1 1
Then every position vector is considered solvable.
For example,
1 1 0
1 0 1
b = O = 1 + 1 == m21 + m22
0 1 1

is a linear combination of the movement vectors.

Definition 2.3
We define the null space of M
Null(M) = {v|Mv = 0} € Z"
which is a subspace of Z’;Z as well.
Any vector in Null(M) is called a null vector, and the basis of Null(M) is the null

basis.

Proposition 2.4

For any solution vector c¢ € I, null vector v € Null(M), c+ v € I,

For any two solution vectors c,c’ € I,, ¢ — ¢’ € Null(M).

Proof. (a) Let b be the corresponding position vector to c, then b = Mc. Since

v € Null(M), Mv =0.Then b =Mc+ Mv = M(c+ V), thus ¢+ v isalsoa
solution vector of b. For (b), As b= Mc and b= Mc,M(c—c’) = Mc— Mc' =

0, so ¢—c € Null(M).
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Theorem 2.5
If Null(M) = {0}, then every position vector is solvable, and the corresponding
solution set is a singleton.
Proof. From the Rank-nullity Theorem we know that

dim(A) + dim(Null(M)) = n?.
Now as Null(M) = {0}, dim(A) = n?, thus A = ZQ‘Z. So every position vector,
which is in 72", belongs to A and therefore solvable. Assume there are two solution
vectors, ¢, c,. From Proposition 2.4(b) we know that

c; — ¢, € Null(M) = {0},

SO ¢; = c,. Therefore the solution is unique.

Example 2.6
From Example 2.2 we know that on 2 x 2 grids Lights Out game, A = Z3. As the
null space only contains the zero vector, every position on 2 x 2 Lights Out game

has a unique solution.

However, it is possible that the null space is nontrivial. In such situation, we can

calculate the number of solutions.

Theorem 2.7

If the nullity of M is m, then there are 2"°~™ distinct solvable position vectors, and
each corresponds to 2™ solution vectors. Furthermore, for each solvable position
vector b, if ¢, is a solution vector to it, then

I, = {cy + v|lv € Null(M)}.

12



Proof. From the nullity we know that |Null(M)| = 2™. By Proposition 2.4 (a), for
each solvable position vector b, there are 2™ solution vectors, i.e.
I, = {cy + vlv € Null(M)}, and |I;,| = 2™. We know that on n X n grid, each

button can either be pressed or not, which implies there are 2 ways of button

n2

pressing. Then there are Zz—m = 2"*~™m distinct solvable position vectors.

From Theorem 2.7 we can conclude that in order to get the minimal solution, it is
necessary to find the basis of the null space first. Here we'll first give some properties

of the solvable solution set.

Definition 2.8

Amatrix M is symmetric if M = M”, orequivalently, m;; = m;; for i,j € [n]. A
Lights Out game is symmetric if the movement matrix is symmetric.

A matrix M isreflexive if for all i € [n], m;; = 1. A Lights Out game is reflexive if
the movement matrix is reflexive.

Remark. The standard Lights Out games are all symmetric and reflexive.
There are few solvability test theorems to those games.

Theorem 2.9

In a symmetric game, a position vector b is solvable if and only if b-v = 0 for
each v € Null(M), where b - v denotes the dot product.

Proof. Assume v € Null(M). Since M is symmetric, A+ = Null(M), i.e. b-v = 0.

Conversely, suppose b-v =0 forall v € Null(M).Then b € Null(M)* =

13



Null(MT)t = Col(M) = A, therefore b is solvable.

Corollary 2.10
In a reflexive, symmetric game, the position vector with all entries 1, is solvable.

Proof. Let b = (1,1,...,1) be the position vector. Suppose v = (vy3, ..., Vij, .., Vnn),

b-v= Z vy = 2 v =v-v
]

i,jE[n i,j€[n]

then

since we are working on module 2. Since M is reflexive, the diagonal terms are all 1.
Then vI'Mv = vTv = v v as the off-diagonal terms cancel each other by symmetric
on module 2, leaves all the diagonal terms (See the following example for details.)

Then by Theorem 2.9, b is solvable.

a1 Q12 413 414][1

Qz1 Gz Q23 Q4| |0

31 A3z dzz Q341

Ag1 Qap QAu3 Qusa]|1

= [a11 + agy + ayq + ay3 + agz + Ay + ay4 + azg + g4l
1

[1 8D~ S]

=lan+as+aul =[M+1+10=01 0 1 1[0

1

Now we give some inspection about the solution set. By Theorem 2.7, for each
solvable vector b, the corresponding solution set is I}, = {c, + v|v € Null(M)},

where ¢, is a solution vector to b. Thus we can list out all the vectors in null space,

and adding those vector to ¢, gives out all the possible solution to b.

Let S = {vy,..., vy} bea basis of the null space. Since all the null vectors are
generated by the basis S, assume in the " entry, a vector v’ hasaunit 1 in

module. Now if there is a null vector with the it* entryin v is p,then v =a,v; +

14



o @V + o+ AV, Where a; € Z,. Similarly, v/ = byvy + -+ byv; + -+ +
by V. Then

v+v =(ay+b)vy+ -+ (a; + b)vi + -+ (@ + D) Vi
is another solution vector to the same position vector, with the i*" entry changed to
p + 1. Therefore if we assume T; = {v|v € Null(M) with the i*"* entry= p}, then
the set Ti”' = {v+Vv'|v € T;} is another vector set with equal amount, with all the
i*" entry changed to zero and T; N Ti‘" = {¢}. From this we have the following

lemma;:

Lemma 2.11
Consider the matrix Q which columns are all the null vectors {v;, ...v,m}:

—v; —
Q = |: e

Then if some column is nonempty, then the column consists of {0,1} with equal
amounts. For such column the number of entries 0 and 1 are both 2™, where m

is the nullity.
Now it comes to the main result of standard n x n Lights out games.

Theorem 2.12
Let Q be the matrix as in Lemma 2.11. Denote the set of all the columns by N, the
set of columns with some nonzero entries by N; and the set of columns with all the

entries equals to zero by N,. Then:

Yy < %#(Nl) + #(Np).
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Proof. For every solution ¢ = (¢4, ..., Cjj, .-, Cnn), WE CanN treat it as some pattern in

the following table:

di10 | di20 | - | Auno
dl,l,l d1,2,1 dn,n,l
. 1,c;; =1
with d; ; ={'” . ,and
Lt 710, otherwise

Zdi’j’l =1 VI,,] € [Tl]
l

To calculate the minimal solution, we assume that for a solvable vector b, there is a
solution ¢y = (cq1, «.) Cyjy s Cpp) SUCh that

Vb = T(Co).

In table form, this means that

Yo = 1(€co) = Z dijq-
ij

For any null vector v, we denote the set of O positions by s,(v) and the set of 1
positions by s; (v). For any other solution vector ¢, ¢ = ¢, + v for some null vector

v. Viewing this in table form, from 7(c,) =y, < t(c) we can see that

Q0= ), dust ), dus
L)

L,j€so (V) i,j€sy (V)

since the entries changes only in s, (v). For each null vector v, we can get one
inequality, and sum over all the inequalities gives the result:

dyjps D), dyat ) ) dige
veNull(M) i,j veNull(M) i,jesy (V) veNull(M) i,jes, (V)

Since
Zdi'j'l =1 Vl,] S [Tl]
l

we can change the inequality to
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dij1< Z z dij1 + z z 1—-d;j1)

veNull(M) i,j veNull(M) i,j€sqg (v) veNull(M) i,jes, (v)
BT Y ST YD MO
veNull(M) i,jesy (v) veNull(M) i,jes, (v) veNull(M) i,jes, (v)

From Lemma 2.11, for each nonempty column, the column consists equal amount of 0

and 1. Changing the summation from rows to columns leads to:

Z di,j,l ES Zm 2 di,j,l .
N

veNull(M) i,j
1= z om=1 — Jm=1(#(N,)).

veNull(M) i,jes, (V) N4
dija= ) 2Mdiy + ) 2"y
VENull(M) i,jESo (V) Ny N1
dijl zzzm_ldul
veNull(M) i,jesq (V) N4

Thus
om Z dy ;1 < 2" (H(NY) + Z 2md, .
N Ng
1 1
Vo =(e) = ) dija S5 D)+ ) dijs < 5 (HN) + #(N).
N Ng

gives an upper bound for the best solution of each solvable position vector b. As all

the solvable vectors follow the inequality,

1
Yy < E#(Nl) + #(Np).

Example 2.13
Here we calculate the minimal solution for 5 x 5 Lights Out game. The movement

matrix is
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S O O O O O O O O O =) O O O O = =, O O O = o O o o
S O O O O O O O O = O O O = =, O O O O = O o o o <o
S O O O O O O O B O O O = /= =) O O OO =) O o O o o o
S O O O O O O = O O O =) = =) O OO O = O O O O OO o o
S O O O O O = O O O = = = O O O = O O O O o o o <o
S O O O O B O O O O = =, O O O =, O O O O O o oo o o
S O O O = O O O = = O O O O = O O O 0O O oo o o o o
S O O B O O O = = = O O O B O O O O O OO o o o o <o
S O = O O O = = = O O O = O O O O O O o o o o o o
SO = O O O = = = O O O = O O O O O O O O O o o o o
—_— O O O O = = O O O = O O O O O O o o o o o o o o
S O O = = O O O 0O = O 0O O O O OO 0O o 0o o o o oo o o
S O = = = O O O B O O O O O O O O o o o o o o o o
(= L = R e R e e R = = = = = e = = i e = = = = = =)
—_m = OO O OO0 0O 0 0 0O 0 O 0 O o0 o0 o o o o o
—_—m, O OO = OO OO0 0 O 0 O O O O o o o o o o o o

[ e = = i R e R e i = = I = R =R e R e R e e = =R e R
S O O O O O O O O O O O O O O o o = O O OO = = = O
S O O OO OO O OO0 OO0 O 0 O o0 20 0 0 = = = O O
S O O OO O OO0 OO0 O 0 O 0O O = O 0 0 0O = == O oo o
S O O O O O O O O O o0 o o 0O = O O o = = O O o o ==
S O O O O OO O O O O 0 O OO0 O = M= = OO o = O
S O O O O O O O O O O O = O O O = = =) O oo O = O O
S O O O O O O O O O O =, O O O = = = O OO O = O ©o <o

[ R R = = L e e e R = = = i e R R R = = = = == e

The null space matrix is

00000000000000000O0O0O0O0O0OCOOOO
|11010110101000001010110101
0= 060r1r101ro0101110111010101110
1101100000110110000011011

There are 5 empty columns and 20 nonempty columns. From Theorem 2.12,

1 1
y < #(NL) + #(No) =X 20 +5 = 15.

Example 2.14

Here we do the calculation for 4 x 4 Lights Out as well. The movement matrix is

18



1100100000000000
1110010000000000
0111001000000000
0011000100000000
1000110010000000
0100111001000000
0010011100100000

| 0001001100010000
0000100011001000
0000010011100100
0000001001110010
0000000100110001
0000000010001100
0000000001001 110
0000000000100111
00000000000100T11

And the null space matrix:

0001001101011110]
00100111100010T11
0011010011010101
0100111000011101
0101110101000011
0110100110010110
0111101011001000
0=[1000110010100111
1 P A0 1SR R N5V 04071
1010101100101100
1011100001110010
1100001010111010
1101000111100100
111001010011000°1
111101100110111°1

There are no empty columns and 16 nonempty columns. From Theorem 2.12,

1 1
y <5 #ND) +#(Np) =5 x 16 +0 =8,

Remark. The other Lights Out puzzle of different size can be done similarly.
However, on the size of 2,3,6,7,8, and many others, the null space is empty. Thus

from Theorem 2.5, the minimal moves y is the number of grids: 4,9, 36,49, 64
19



respectively.

Lights Out cube

The version is similar to a standard Lights Out game, but played ona 3 x 3 x 3 cube.
Whereas the standard Lights Out has edges, the cube does not. Each button always

has 4 neighbors, thus each button press changes 5 lights.

21(24|27(12|15|18(39|42|45|30(33(36
20(23(26|11(14|17|38(41|44|29(32|35

19(22125|10(13(16|37|40|43(28|31|34
48|51 |54
47 |50|53
46 (49|52

Fig.4.

20



The movement matrix of Lights Out Cube is shown in block matrix form

A BT]

M:[B C

where

- O ©O O ©o o o o o <
—_ O O O O o o o o <
- O O O O o o o o <
- O O O O o o o o <

S O O O O O O O 0 O o o o0 o0 =~ 0o o = = O
—_— 0 O O O O O O O O O O o o o o o = o o
(=R = = = = = = = R R e R 2 — I =R = e R e e

—_ O O O O O O O O O O O O O o O o0 o o0 =Oo ==
(=) =]
- o

—_ 0 O O O O O O O O O O ~ O O = =, O OO O o o o o o o -

OIS ORNO OO OOl DR ONONENO = — O O

S O O O O O O O O =~ O O = = O = O oo OO o o o o = o o0
S O O O O O O O O o = -~ O O = O O o O 0o oo o o o o o0
S © O O O O O O O = = = O = O O O o O o o o o o o o<
S O O O O O O O O = =, O =~ O 0O o 0O o 0 o0 = 0o o o o o0
(=R e ==l e = =R e e e e R - = = e R - e I = = = R e R - R -]
S O O O = O = = = O O O O O O O O o O o0 o o oo o o o0
[N -}

(= e = = R e R R e R = = = = i = R = N = = I = =l e R« = -]
S = O = = = O DO O 0 O 0 O o0 O O o0 O o0 oo o o o o o0

- o O
=R e I e R e R e e I = A =R =l = R T = = =R = R e i e i e R e S -
—_ O O O O O O O O O O o 2 O O O O o o o o o o =

(==l e ==l e e = =l = e R = = = =R =R B e R e - =
O O O O O O O O O O = O = = =) O, OO O oo o o o o o o

S O B2 O © O O © © ©O O o o o = O -

(=N e ==l e R R e i = = =R R R I = R = = R e R ]
© .o CEONONOOONO OMORCOIE- © — —

[ =R =R = R e R e R e R e R = 2 = =R R e R i — I = I R R e R e i —
(=R N I = =R R R e R e R = e R e R e = = = I = R = = = R e R
[ e R = = e = = = = = = R e = = B ]
(== e ==l == R e = == i R R = = =R R — R =]
S ©O O O O O O O O 2 O O o0 o o0 o0 o oo oo == o oo = o o0

(=N -}
S = = O O Rk, OO0 0 0O O o O o o o o

S O O o o o

—_ = O

21



[=E = e === e R - - =A== e e - = = e = e = = = = = =
(=R i ==l e 2 — =l e R R = 2 — A =l = R R e e R = = 2 =R ==l ]

(== e I ==l = i R e R L = =R = R R e R e R e e R = R = R e =] (=R e - === i e = - I = =l = R e i = R =R R - = I = =l R e = e =]

(=R === R R R = =R i R P R e R e R e e T =
[ e R = = R R = = L R = = = = = e = e R = B e R

(= e R I = =l = R e R = = R T = =R =R e R B e R e i e R e e = =

(== e === e === el - = = = i e R - = =l e I = A =l ]

(= N I ==l = R R R = = = R e = =l = R R R T R S B ] O O OO OO0 OO0 OO0 OO0 0 0 0O 0 0 0O 0 O o0 O o o o oo
[ e R = == = e e e e = == = R e R e = = R = R = =] (=R R ==l R = =l R R R e = = = B =« =R = =R = =R = -]
(=R N I = =R R R = R ==l =R R R R e R e N = R R = = =) O O O O O O O O O O O O O o O = 0O o0 0O OO o0 o o o o o o
(= e = =R == R R =R = = = R = =l R L =T e R e e = SO O O O O O O O O O O O —~ O 0O O 0O OO 0O O o o o o o o <o
(== e == = R i e I = =R =l e i e = =R = e R e R O O O O O O O O O = O O 0O 0O 0O 0 0O 0O o0 O o O o o = o o

—_ 0 O O O O O O O O O o o o = O =

[ — i — I R R e R N = = = R R = I = =R )

— O O COYSESESF ONC o NEERSIEN O S

S DO OO O OO OO0 O OO0 = O = = =~ OO0 oo oo o o o o o SO O O O O O O O O O O O O O O o O o0 O o o o o o o o oo
[ e R = == = e e e e = = = e R T i =T ==l e R e S e S e R e S o S e O O O O O O O O O O O O O O O 0 O O 0O O o o o o o o <o

S = O O O O O O O O O = O = = O O

—_ O O O O O O O O O O OO O o o o o o o o o o o <o

= J=) = = =l e W) - B
(= e === R R =l = =l e B e === e e e e = (=Nl = =l - = = I — =l =R R R I — I = I R R e R e = = =R = R ]

S O O O O O O O o0 0 O O = = O = O oo O o o o o o o o o O O O O O O O O O O O O O O O o O o0 O o o0 o o o o o oo

(=R e === R e R e R R =l e — = = I e - i e R e I e R e R - =

N
N

—_ 0 O O OO O 0O 0 O 0 OO OO0 o0 o0 o0 o0 -~ 0O o0 oo o o0 o o o0

(= e ==l =l = R = R i R e R e R e R e R e = = = O O O O O OO0 0 OO0 0 0 0 0 0 O 2,00 0O o0 o0 o o o o o
S O O O O O O O o0 = = O = O O OO O o O o0 o o o o = o C SO ©O O O O O O O O O O O o0 o O =0 o0 0O o0 o0 o0 o o o o o
(= R = =l R = = e R - - - - = N e = = e R e = =) SO ©O O O O O O O = O O O O O O o O o oo o =0 o o o o o
(= e e = = e - - = - = = = - - I = =R =l e R e = e =] SO O O O O O O O O O O O O 0O O o0 O o O —~ 0o o o o o o o

_ O O O O O O O O O o o o o o o o o o o O O O O O 0O O 0O O O O O 0O o0 0O o0 0 O =0 0 o0 o o o o o
(= = = R e R e R e I = =l R R R = = = I = =R = i N =) SO O O O O O O = O O O O 0O O 0O o0 O o0 O o0 o o o o o o oo

—_ o © =

oS o o

= = - I = - R e e e 2 = A =l = i e = = I = =l R e I O O O O O O O O O O O O O O O o0 O o0 O o o o o o o o oo
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Now for the null space, there is a basis as shown in the rows of R:

lo0000QC0QCO0QCILIOIOLIOITITI1IO01I0101112111101010111101010001000100
p1ro00000Q1IOOlIIOO0OOlII1IO0O0LIOI1I0O0OO01I1I0C0C00C1I11I001011000100000T10
po1oo00001O0QOO0QLIO0OO0QO0CCOCOLITIIOLIOIOLI1I001I0O0C0001011101110100000100
poo0t1o01o00QoOQOQQOGIL1IO0O1I0C0C1I1I1IO0O0QO0OCOCTIIOO001101001110000110000101000
po0QOOQOIOIlIOlTI1lO01I11I00C0C1I0O0O0O0O0C1I1I1I0101011001000001000000101
poo00OOQOOQCOIOILIOOOIOIlI0O1I0O0O01I011I01000101101000101000000000

Therefore the cube has 26 = 64 vectors in the null space.
From the basis we can see that in the null space matrix Q, there will be 6 empty

columns and 48 nonempty columns. Thus by Theorem 2.12:

1 1
y < 5#(Ny) + #(No) = 5 X 48 +6 = 30.
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3. N-ary models and Variations

The method in chapter 2 can be applied similarly to other commutative puzzles. Here

are some examples:

N-ary Lights Out

Lights Out 2000 is a version of Lights Out that seems very similar to the standard one,
i.e.a 5 x5 grids of buttons with light on them. However the rules is a little bit
different: every light have three states: off, red, and green. Each press changes the

light from off to red, red to green, or green to off. Thus the puzzle is of module 3.

On such puzzles, we can generalized our definition.
Definition 3.1

All the vectors belong to Z?z now, where r is the modular. Z, denote the set

which consist only {0,1,...,r — 1}. All the other symbols follow in Definition 2.1.
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Most theorems can be applied directly, except some in the following might need an

extended version on different modules.

Theorem 3.2

If the nullity of M is m, then there are r™*=m distinct solvable position vectors, and
each corresponds to ™ solution vectors. Furthermore, for each solvable position
vector b, if ¢, isa solution vector to it, then

I, = {cy + vlv e Null(M)}

Proof. From the nullity, |Null(M)| = r™. Thus for each solvable position vector b,
there are r™ solution vectors, i.e. I}, = {cy, + v|v € Null(M)}, and |I},| =r™. On

n X n grid, each button can either be pressed or not, which implies there are rn?

n2
ways of button pressing. Then there are :—m = r™*=™m (istinct solvable position

vectors.

Lemma 3.3

Consider the matrix Q which columns are all the null vectors {v;, ...v,m}:

v, —
Q- [ ]
Vom —

Then if in some column, an entry is a unit in module r, then the column consists of
{0,1,...,r — 1} with equal amounts. For such column, the amount of each number is

r™=1 where m is the nullity.

Proof. By Theorem 3.2, for each solvable vector b, the corresponding solution set is

I, = {c, + v|lv € Null(M)}, where c, is a solution vector to b. Thus we can list out
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all the vectors in null space, and adding those vector to ¢, gives out all the possible
solutions to b.
Let S = {vy,..., v} beabasis of the null space. Since all the null vectors are
generated by the basis S, assume in the i* entry, a vector v’ has a unit in module
r. Now if there is a null vector with the i®* entryin v is p,then v =a,;v; + -+
a;v; + -+ a,,v,,,, where a; € Z,.. Similarly, v' = byv; + -+ b;v; + =+ + b, v,p,.
Then

v+ kv = (a; + kb)vy + -+ (a; + kb)V; + -+ + (ay, + kby)Vp,
is another solution vector to the same position vector, with the i*"* entry changed to
p + ku. Since u is a unit, when we change the value of k from 1 to r, p + ku
cycles over all numbersin {1,...,r}. (If not, there would be distinct k;, k, that
p + kiu =p + kyu, then (ky — k,)u = 0, but since k; # k;, this leads to a
contradiction that u is a unit.) Therefore if we assume T; = {v|v € Null(M) with
the it* entry= p}, then the set Ti’“" = {v+ kv'|v € T;} is another distinct vector set
with equal amount, with all the i®® entry changed to k + 1. Thus the amount of each

number in those column is r™=1,

On n-ary models, we can measure the number of movements in different ways. One is
to simply count the nonzero entries, while the other gives a weight for each entry. For
instance, consider the Lights Out puzzle. One can count the red-green-off moves as

one or two moves. This leads to the following definition:

Definition 3.4
The whole move metric counts the number of n consecutive moves on one movement

as one, while the separate move metric count it as n. i.e.
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Whole move metric (o) = z 1
Cl'j;ﬁ()

Separate move metric w0 = z Cij
Cij+0

With this we can complete the theorems for minimal moves.

Theorem 3.5 (for whole move metric)
Let Q be the matrix as in Lemma 3.3. Denote the set of all the columns by N, the set
of columns with some nonzero entries by N; and the set of columns with all the

entries equals to zero by N,. Suppose that each column in N, contains a unit, then:

y < (1 - %) H(N) + #(N,).

Proof. For every solution ¢ = (¢y3, ..., Cij, ---» Cnn), WE CaN treat it as some pattern in

the following table:

d1,1,0 d1,2,0 dTL,TL,O
d1,1,1 d1,2,1 dn,n,l
dl,l,r—l dl,z,r—l dn,n,r—l
] 1,¢c;; =1
with dijl = { Y . ) and
0 0, otherwise

Zdi'j'l =1 Vl,] S [Tl]
l

To calculate the minimal solution, we assume that for a solvable vector b, there is a
solution ¢y = (cyq1, «) Cyjy ) Cpy) SUCh that

Yp = 1(Co).

In table form, this means that

Yo = 1(co) = Z diji-
7l
1%0
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For any null vector v, we denote the position set by sy (v) if the number is k. For
any other solution ¢, ¢ = ¢y + v for some null vector v. Viewing this in table form,

from 1(cy) =y, < t(c) we can see that

Z di,j,l S Z di,j,l + z di,j,l + + Z di,j,l'

L,j,l i,jESy (V) i,jes, (v) i,jESr_1 (V)
[#0 1#0 l#r—1 1#1

Since the entries changes only in s,.(v) while r # 0. For each null vector v, we can

get one inequality, and sum over all the inequalities gives the result:

Zdi,,-,ls Z Z diji + Z Z diji+-+ Z Z diji.

veNull(m) i,j,l veNull(M) ,jEsq (V) VvENull(M) i,jEsq (V) vENull(M) i,jES,_1 (V)
1£0 [+0 l#r—1 1#1

Since
Zdi'j'l =1 Vl,] S [Tl]
l
we can change the inequality to

Zdi,j,zﬁ Z Z diji + Z Z (1-dijr1)

veNull(Mm) i,j,1 vENull(M) i,j€sg (v) veENull(M) i,j€s; (v)
1+0 l#0

++ Z Z (1_di,j,1)'
vENull(M) i,j€s,r_1 (V)

veNull(M) i,j,1 veNull(M) i,j€sq (v) veNull(M) i,jesqy (v)
1#0 1#0
- Z dijr—q+ -+ Z dija
veNull(M) \ i jes; (v) i,j€syr_q1 (v)

From Lemma 3.3, by assumption, for each nonempty column, the column consists
equal amount of numbers in {0, ..., — 1}.Changing the summation from rows to

columns leads to:
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Z di,j,l = T'mz z di,j,l .

veNull(M) i,j,1 N [#0
1#0

T Y

veNull(M) i,jé&sq (v) N1
— ..m m—1
e =" 0, D duga 1" ) ) iy
VENU“(M) i,jESo (V) No 1#0 Ny 1#0
1#0

Andforeach t, 1<t<r-1,

— m-—1
dijr-t = Z " dy et

veNull(M) i,jes¢ (V) N1
Thus
rm Z Z di,j,l <rm Z Z di,j,l + rm-1 Z z di,j,l + (T - 1) X T'm_l(#(Nl))
N 1#0 No 1#0 Ny 10
— Z Tm_l z di,j,l .
N1 l#0
i7 = 1l 1
7(co) = Z Z dij; < Z Z i+ ——H#(N) < (1 - ;> H#(N,) + #(N).
N 1#0 No 1#0

gives an upper bound for the best solution of each solvable position vector b. As all
the solvable vectors follow the inequality,
1
y < (1 E ;) #(ND) + #(No).
Example 3.6.

Consider the Lights Out 2000 puzzle measured in whole move metric. The movement

matrix is exactly the same as in standard 5 x 5 Lights Out game:
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— o O = O O O

S O O O O O O O O O = O O = = =
S O O O O O O O O = O O = = = O
S O O O O O O o = O O o = = O O
S O O O O O O = O O = = O O O =
S O O O O O = O O = = = O O = O
S O O O O = O O = = = O O = O O
S O O O = O O O =

S O O =B O O = = O O O = O O O O
S O = O O = = = O O = O O O o o
S = O O = = = O O = O O O O O o
—_ 0 O O = = O O = O O O O O o o
S O = = O O O = O O O O o o o o<
S = = = O O = O O O O O O O o O
—_— = = OO

—_ = O O = O O O O O O O o o o o

S O O O O O O O O O o = O O = =

However the null space matrix Q is different in module 3:

31

S O O O O O o o o o

—_




—_ N O
N = O

—_
—_—

— o o 0o o o o o o
NN O = O =N = N O
R N A )

O N = O = O N = O
NN O = O =N = N O
© = O N O W

—
—
—
—_—
—_—
[

N —m O = O NN, O = O N O D= =IO N O NN =D = O

—_

[\
N —m O N = O N = O N =, O N~ O DN

N DN === OO O NN N=m = O OO NN DN ===, O O
S ~ N = DN O DO = = N O N = O

D = O N = O NN =, O RO N =, O D=, ND=OO NN =IO D= O
— = = NN NSO O = E = NN N OO O R~ = = NN N oS oo
SO N —m O N = O N = = O N = O N~ O NN =, O DN~ O N = O
N NN OO O === OO O = = NN === NN NN O o O
S = N = N O N = = N O DO = O

— N O = N O = N = N =N OO = DO =D =D o = N O
S N = D= O = O NN RO =R, DO NN == O N N =N = O
[\ e R I e R e R O R O e s N ) 2 \® B B e B \O I O B e R L S )
N = OO N = = O N =, O NN R, OO N =, O N =, =, O NN = O
—_— N O O = NN =N O = = N O O

S O O O O O O O O O O O O O O o o o o o o o o o o o <o
N = O O N == O NN =, O NN R, O D=, N == O NN = O
[l \° BN e R e RN NS T S B e B S N e 2 S e B e L O s ) " \S I e R S \ B )
e L > R e R e I \O R (OB S =R <R (S I (S I N R i \S I \S R \O R T e R S )
— O NN = OO N RN RO O N == DO N == NN = O
S N = = O NN =, OO N =, = O N ND=R,O OO N == O NN = O
N O = N O = N O = O = N O = N O = N = N O = N O = N O
[l \° R S B R S = =R \S e T S e R S L U B =R \ ]
—_— O NN = O NN = O NN = O N, O N~ N =, OO N = O N = O

— O N O N =D = O =, O N NN~ N

NN NN N N N N N = o e e =

There are 1 empty column and 24 nonempty columns. As all the nonempty

columns contains a 1, which is a unit, from Theorem 3.5,

2 2
Yy < §#(N1) + #(Ny) = §X 24+1=17.
Now we give another theorem for separate move metric.

Theorem 3.7 (for separate move metric)

Let Q be the matrix as in Lemma 3.3. Denote the set of all the columns by N, the set
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of columns with some nonzero entries by N; and the set of columns with all the

entries equals to zero by N,. Suppose that each column in N, contains a unit, then:

y < &= D) +5 #00)]

Proof. For every solution ¢ = (¢qy, ..., Cjj, ..., Cnn), WE Can treat it as some pattern in

the following table:

d1,1,0 d1,2,0 dn,n,O
di11 di1 dnni
dl,l,r—l d1,2,r—1 dn,n,r—l
. 1,¢c;; =1
Wlth dijl={’ Y . 1and
0 0, otherwise

Zdi'j'l =T Vl,] S [Tl]
l
To calculate the minimal solution, we assume that for a solvable vector b, there is a
solution ¢y = (Cq1, +, Cyjy s Cnpp) SUCh that

¥ = T(Co).

In table form, this means that

Yo = 1(€o) = Z Lxd;j;
L)L
l+0
with the weight of d; ;;, = L.
For any null vector v, we denote the positions by s, (v) if the number is k. For any

other solution ¢, ¢ = ¢y + v for some null vector v. Viewing this in table form,

from 1(cy) =y, < t(c) we can see that

Z Ixdj < z Ixd;j+ Z o1 (D xdj+-+ Z Gr_1(D) X d; ),

i,j,l i,jESy (V) i,jEsy (v) 1,j€ESr—1 (V)
1+0 1#0 l#r—-1 1#1
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[+t I<r-—t

where ¢t(l)={l+t_r l>r—t’

Since the entries changes only in s,.(v) while r # 0. For each null vector v, we can

get one inequality, and sum over all the inequalities gives the result:

[ X di,j,l < [ X di,j,l
veNull(M) il veNull(M) i,j€Sq (V)
1#0 1#0
Y h Ot Y g xdyy
veNull(M) i,j€Ssq (V) veNull(M) i,j€Sy—q (V)
l#r—1 1#1

Since
zdi’j’l =1 VL,] € [Tl]
1
we can change the inequality to

[ X di,j,l < [ X di,j,l

veNull(M) i,j,! veNull(M) i,j€sq (V)
[#0 L#0

- z z Z b (D) xd;j,.

vENull(M) t+0 i,j€s¢ (V)
l£r—t

From Lemma 3.3, by assumption, for each nonempty column, the column consists
equal amount of numbers in {0, ..., — 1}.Changing the summation from rows to

columns leads to:

le di,j,l = TmZZlX di,j,l'

veNull(M) i,j,l N 1#0
l#0
[ x di,j,l = T'mZZ [ % di,j,l + T'm_IZZl X di,j,l .
veNull(M) i,j€sq (v) Ngo 1#0 N; 1#0
L#0

Andforeach t, 1<t<r-—-1,

¢ (D) xdyj; =rm1 Z Z b (D) xd;j.

veNull(M) i,jes; (v) Ny l#r—t
l#r—t

Then
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ZZ Z ¢e(D) x dyjy = ZZ Z de(D) X d;j,

N; t#0 l#r—t Ny 1 t#Er—l
ZZdl,z > 6
t#r—1
Zde(ZH(HtH Z (l+t—r)>
t=r—-I1+1

_ ;Zdw xz((r— [=DU+m)+U=-1DI)
= > > diy x%(rz —r—20)
N, 1
= Z [% (rz — r)z diji — Z [ x di,j,l]
N1 L L
THGEDICCA BN WET N
N. 1

The inequality becomes

mZledl]l <T‘ ZZZXdi,j,l‘i‘rm_lZZlei,j,l

1£0 No 120 N; 10
m-—1
(% = YN = 7 1zzzxdl,l
Ny
1
1(cy) = ZZ Ixdy, < Zz Lx dyj + 5 (= D))
Q %0 No l#0

1
<@r-1) [#(NO) +s #(Nl)].
gives an upper bound for the best solution of each solvable position vector b. As all

the solvable vectors follow the inequality,

1
V< (= D[#0) + 54N,

Example 3.8
Consider the Lights Out 2000 puzzle measured in separate move metric. The

movement matrix M and null space matrix Q are the same as in Example 3.6.
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Then, from Theorem 3.7,

y<B-1) [#(No) + %#(Nl)] =2 (1 +%>< 24) - 26.

We will show some more variations in Chapter 4.
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4. Some other commutative puzzles

Rubik’'s Clock

Rubik's Clock is a puzzle invented and patented by Christopher C. Wiggs and
Christopher J. Taylor. The inventor of Rubik's Cube, Erné Rubik, who is a Hungarian
sculptor and professor of architecture, bought the patent and market the product under

his name in 1988.

It has two sides, each contains nine small clocks. Four wheels, one at each corner of
the puzzle, is able to twist and affect the small clocks. Four buttons in the middle can
be either pressed or not pressed. Whenever some button is up, and if the
corresponding wheel on the corner twisted, the adjacent clocks of the button also
rotates, and the corners on the back side rotates as well.

The goal of the puzzle is to set all the small clocks to 12 o'clock. This puzzle is also
commutative since the order that button pressed and wheel rotated does not affect the
state at the end.

With the theorems in chapter 3, we can calculate the minimal solution of it.

The Rubik's Clock is of module 12. Since there are four wheels, four buttons and 2
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way of wheel rotating depend on the buttons (rotate the wheels of pressed button or
unpressed button), there are 4 x 4 x 2 — 2 = 30 movements (With 2 case of all
button pressed or unpressed)

Thus the movement matrix is as follow:

(110010101 1010100101011010100°T1 1]
010100000101010101000101010°10°1
1011001011001 0110100110100110°1
010001000101010100010101010°10°1
010101010101010101010101010°10°1
000100010100010101010101010°10°1
/10101100101 1001100110100110°1°0°1
M_000001010001010101010101010101
1010101100101 1001101001 1010101
10-10-10-10-1000-10-10-10-10-100000-10-10
-10-10-10-10-10-10-10-10-1000-10-1000-1000
-10-10-10-10-10-10-10-10-10-10-10-10-10-10-120
10-10-10-10-10-1000-10-10-10-1000-10020-10
-10-10-10-10-10-10-10-10-10-1000-10-100020 0|
for the null space, there is a basis as shown in the rows of R:
[100000000000000000-10-10-11111¢=10 -1
010000000-10-100000000O00-1111T1=-1-10
001000000000000000-10-10-11111-=200
000100000-10000000-100000100O0O0O0O0
000010000000000000-10-10-111201-100
00000100000-10000000-100000T120000
000000100000000000-10-10-10111-100
~|00000001000000000-10-10000000T1200
R_000000001000000000-10-10 00000T10
0000000000100000000O0-10-1100T1-100
000000000000100000-1000-101120-100
00000000000001000000O000-10-10001
000000000000001000-10-1000000-111
00000000000000010000O0O0T1 -1-1-1-1011
000000000000000010-10-10-101201-101
10000000000000000000 0011 -1-1-1-11120]

From Theorem 3.2, there are 12'® null vectors in total. From the null basis, in the
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null vector matrix Q, each column contains at least a unit 1. Measured in whole turn

metric, from Theorem 3.5,

< 11 30 = 27.5

— x 30 = 27.5.

V=12

Remark. On n-ary models, as n becomes large, Theorem 3.5 may not be appropriate.
As on Rubik's Clock, since the nullity is 16, all the solvable position vectors can be
solved in 30 — 16 = 14 moves. However, in 2014, Jakob Kogler found the upper

bound of y is 12 with computer. [4]

Gear Shift

Gear Shift is a cube shaped puzzle invented by Oskar van Deventer, who lives in
Leidschendam, the Netherlands. The cube consists eight corners that are gear-shaped.
Four bigger corners have gears with 8 teeth and four smaller one have gears with 5
teeth. Whenever a corner is twisted, all the same sized corner twisted in the same
direction, and the different sized ones twist in another direction. One can also pulled

apart the puzzle to two opposite faces, so they become independent systems. In this
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way you can twist four corners on one face, independently of the rest corners.

On Gear Shift cube, there are 7 possible movements, including one 8 corners twist
and six 4 corners twist on different faces. Thus the movement matrix is

(1 1010
10 -1-10
10110
1-10-10
1-10 0
101010
10 -10

0

And the null space is of nullity 3, with a basis shown in the rows of R:

-1110000
R=]-1001100
-1000011

On Gear Shift cube, the large corners are in module 8 while the smaller ones in
module 5. Thus it can be viewed as in module 40, and therefore there are 403 =
64000 null vectors. By the basis, there is no empty columns in the null space matrix
Q, and each column contains a unit 1. Measured in separate cube metric, by Theorem

37,
1
y <39(3x7) = 1365.

which means it can always be solved in 136 teeth.

Remark. When measured in whole cube metric, there is a simple upper bound from

the nullity 3, y <7 -3 =4.
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5. Conclusion

In this paper we describe the method to find the upper bounds, but for the lower
bounds, there is no general way to find it. It relies on computer search or even case by
case. On n-ary models, the upper bound is not "tight" enough when n > 3 (we have
seen it on Rubik's Clock). Also on non-commutative puzzles, there is no systematic

proof such as lit-only Lights Out games. All those things are the targets in the future.
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