B2 AT S D ROE AL ST L 0

Ay iR B

Permutations with 0 or 1 fixed point in

hyperoctahedral groups

W
o+
&
F
e
o

o £ 4 B 108 &£ 6



3

Tz a1 TRAT R  BRAER T B GRKEEALIL
PETR LA RS RABAT T R LSS RS BT BRI

FE e FlLg s 3§ R AR G g e .

R PR S BRI SR LA R RIS - B RS L
PTGk A Al B R A AR AT LFLAB et 2k @ A
RFoEie e b B A & B PR B Ay R A BT o RO SRR
EFRLMCKGFREN A ERL TR BV S REET AR F

VRN F- L B RA TS AR T L E o Al

Y nd £ AL i L 5B s T XEr | ARES S PR S5

TefiE AL PE ALY o RS AR AL A

;m

AR T o
Foobo AL RN E ML R R0 RA SR & F gl § R A
THT A EL T RERNRE hhe TR B RN
2 [ R
BT PR X R g B R R R Ak B o X i
pLen§T 1 o B SR i S B R o B 4 A R R AR A { B

4 £+

NS g

bR AANTA AL F AR B A RE R T  RhE T P AR LT

-~

BRI S R U PG S R SR 3 I
¥ o
4 18

108.07.03



Contents

1 Introduction
2 Derangements in hyperoctahedral groups
3 Alternating permutations with maximal number of fixed points in

hyperoctahedral groups

4 Strictly decreasing permutations
5 Conclusion and Discussion
6 Acknowledgement

References

14

16

20

22



Permutations with 0 or 1 fixed point in

hyperoctahedral groups

Chou Yu-Jen

Abstract

In this thesis, we extend the work of fixed points on the permutations of
[n] in two directions: firstly, we discuss the fixed points problems of hyper-
octahedral groups B,; secondly, elements in B,, can be thought the letters
are painted by two colors, it can be generalized with r colors. Moreover, we
discuss the fixed point problems in the subsets alternating permutations of B,
and strictly decreasing permutations of 6%7") . After removing all fixed points
and standardizing the remaining letters, we focus on colored permutations
with 0 or 1 fixed point. We obtain combinatorial correspondence between
derangements and elements with exactly one fixed point together with their
recursions and generating functions.

Keywords. Derangements, hyperoctahedral groups, alternating permu-

tations, colored permutations

1 Introduction

For any positive integer n, denote the set {1,2,...,n} by [n]. Given a permuta-

tion o on [n], a label k € [n] is called a fized point of o if and only if o(k) = k. A



permutation of [n] is called a derangement if it has no fixed point. Let d,, denote
the number of derangements of [n]. It is well-known (cf. [Tuc80]) that the sequence

d,, satisfies an easier recursion
dy, = (n—1)(dp1 + d,_2), n> 2, (1)
and also a harder recursion
d, =nd,—1 + (—1)", n>1. (2)

Combinatorial proofs of the latter identity were given by Remmel |[Rem83]
and Wilf [Wil84] independently. And the generating function of d,, is also well-

known [WG16]:

f) =Y = g

n>0 =—

Ordinary permutations on [n] can be thought as painted by only one color.
Bagno ([Bag04, BG06]) generalizes this notion that allows r colors to be painted on
permutations, which results in the colored permutations. In this article, we would
like to generalize the notion of derangements to the colored permutations.

We first introduce the groups in B, and ). Let B,, be the hyperoctahe-
dral group of order n, that is, elements in B, are permutations o on the set
{£1,4£2,43, -+ ,+n} such that o(—i) = —o(i) for all ¢ € [n], we use the nota-
tion 7 := —i in this article [FHO05]. In particular, elements of B,, can be thought as
permutations whose letters are painted by either of two colors. Therefore when r
colors are available to paint the letters, we get the wreath product 6%” of the cyclic
group C, of order r with the permutation group &,, (cf. [Bag04]). We call an index
i € [n] is called a fized point of 0 € B, or o € S\ if o(i) =i and 7 is uncolored, (in

the case of B,,, we will refer the first color as uncolored.) A permutation ¢ without
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fixed points in B,, or S is still called a derangement. For a permutation o in B,
or (‘ng), we denote the set of fixed points of o by FIX(¢), and fix(¢) is its cardinality.

There are two ways to represent the elements in B,, and Gg) in this paper. First
is the window notation and the other is cycle notation. In the window notation,
permutations in B,, can be written as ¢ = 0109 - - - 0, where o; = o(i); and we can
also denote o € B, with cycle notation introduced by Reiner [Rei93]: each cycle
(lislos oy lgy o5 1) means o(|l;]) = liq1),1 <@ < j — 1 and o(]l;]) = l; where
Lilo, .l e {1, £2, ... En, || # |lg] if § # k.

For example, consider the element

1 23 435
(o) — EB5.

SN2 25

=

Its window notation is ¢ = 3 2 14 5 € Bs, and its cycle notation is written by
o= (13)(2)(4)(5). Its only fixed point is 2.

As like as elements in B,,, we also can denote the elements in 6517") with window
notation and cycle notation. Elements in & will be written in the window notation
0 = 0109...0,, where each o; is a pair (¢;,j;) with ¢ € C,. and j € [n]. We can
also write 0 € &) in the cycle notation: each cycle (I1,ly, -+, Ik, - ,l;) means
o(|li]) = liy1), 1 <i < j—1and o(|l;]) = 1 where Iy, 15, -+ ,1; on [n] with r colors,
] # [l i 5 # k.

For example, consider the element

1 2 3 4 5
o= _ € 6;3).
3 2145
Its window notation is 0 = 32 145 ¢ 6&3), and its cycle notation is o =

(1 3)(2)(@)(5). Its only fixed point is 2.



This article begins with focus on derangements in B,, and sy First, we count
the numbers of elements with k fixed points in B,. By removing all fixed points
and standardizing [FHOS] the remaining letters from a permutation in B,, we can

get a derangement on fewer letters. For instance, let us consider the permutation

7 =52341 € Bs with FIX(¢) = {2,3}. By removing all fixed points, we have
o = 5 4 1, then we standardize the remaining letters o, we obtain a derangement
7 =321 € Bs. With this procedure, we realize that enumeration on derangements

is essential.

Formulas similar to Equations , and are obtained for hyperoctahedral
groups. We prove the easier recursion of the derangement numbers in B,, by using
the cycle notation. Similarly, it can be extended to an easier recurrence of the
derangement numbers in 652"). Next, we prove the harder recursion in two different
ways, we use the easier recursion to prove and another way is the combinatorial
proof by removing all fixed points and standardizing [HX09] the remaining letters
to get a bijection. Finally, we get the correspondence between the derangements in
B,, and elements with exactly one fixed point in B,,. Then, we extend the results to
&\ and get the generating function which is similar to the generating function of
d,, in the end of section 2.

At the start of this project, we observed that the relationship between the num-
ber of derangements in B,, and the number of elements in B,, with fix(c) = 1. Next
we consider two subsets of B,, and &, In Section 3, we denote the subset of al-
ternating permutations (“snakes”) by Gk, that is, the elements o € B,, satisfying
(1) >0(2) <o(3) >0(4) <--- and having k fixed points. We enumerate the per-
mutations with maximal number of fixed points in G, ;. We discover an interesting

identity between the derangements in B, and the elements with maximal number



of fixed points in G, and Gs,,1. To conclude Section 3, we give a combinatorial
bijection for that identity.

Another interesting subset of S is the subset of strictly decreasing permuta-
tions, which we discuss in Section 4. By strict decrease we employ an order > on
the set C, x [n] is found in Bagno and Garber [BGO06]. It is easy to see that any
strictly decreasing permutation can have at most 1 fixed point, therefore we only
need to enumerate the set of all strictly decreasing derangements in G%T), which is
denoted by S,,0, as well as the set of all strictly decreasing permutations with only
one fixed point in Gg), which is denoted by S,, 1. We give some enumerative results
like the number of elements in S, o, the connection between S, and S,,41,1, and
we give the recursion and the generating function. In the end, we obtain a formula
analogous to Equation for the strictly decreasing permutations in e,

The paper is organized as follows. In Section 2, we discuss the derangements
in hyperoctahedral groups together with some generalization. In Section 3, we
give bijections between alternating permutations in B, with maximal number of
fixed points and the derangements in B,. In Section 4, we enumerate the strictly
decreasing permutations in the wreath product &) and provide their generating

functions. We end this paper with some comments and future work in Section 5.

2 Derangements in hyperoctahedral groups

Our task in this section is to extend the easier recursion like Equation and
the harder recursion like Equation in B, and 65?, finally we have the generating

function like Equation in 6"



We first classify the permutations in B, by their numbers of fixed points. Define
F.r:={o € B,: fix(o) =k}, frk = |Fnkl, k=0,1,...,n.

Elements in F), o are also known as the derangements in B,,. Below is the table of

the first few values of f, x:

Table 1: Statistics fix on hyperoctahedral groups B,

n\ k 0 1 2 3 4 5 6 7
0 1

1 1 1

2 5 2 1

3 29 15 g 4

4 238 SG - o A W

5 2320 1165 290 50 5 1

6 | 27949 13974 3495 580 75 6 1

7 | 391285 195643 48909 8155 1015 105 7 1

We are going to prove a few identities involving the sequence f, ;. By picking out
all fixed points and standardizing the remaining letters, the following result follows

immediately.

Proposition 2.1. Let n, k be integers with 0 < k < n. Then we have

fn,k - (Z) fn—k,O' (4)

Proof. Let o € B, have k fixed points. The number of ways to choose £ fixed points
from n is (Z) By removing all fixed points of ¢ and standardizing the remaining

letters, we obtain a derangement in f,_j 0. O
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The derangement numbers satisfy the harder recurrence d,, = nd,_; + (—1)".
T. Benjamin and Joel Ornstein [BO17] used the cycle notation to present a simple
combinatorial proof, and we use the similar idea to prove the recurrence of the

derangement numbers f, o as follows.

Theorem 2.2. The sequence (f,0)n Satisfies the following recursion:

Joo = fio=1; foo=02n—=1)fo10+2(n—1)fr_20, Vn>2. (5)

Proof. Let o € F), o be written in the cycle notation. We consider how to generate

o from elements in F,,_1 o and F),_o:

1. In F,_1 0, we can insert a cycle (7) and get f,_10 elements in F, o. Or we can
put n or @ behind n —1 letters within any cycle, so we can get (n—1)-2- f,_10

elements in F, o.

2. Elements in F,_;; can be inserted n or @ into the cycle (j), where j €
{1,2,...,n — 1}, and we have n — 1 choice of fixed point, by removing the
only fixed point and standardizing, we have element in F},_5, so we can get

(n—1)-2- f,_a0 elements in F, .
For n > 2, we have

Jrno=focio+(n—=1)-2- f1o+(n—=1)-2- frap
=2n—1)fac10+2(n—1)f20

]

The previous result is parallel to the recursive formula satisfied by d,, like Equa-

tion . Next we prove the result for f,, o which is analogous to Equation ([2)).



Theorem 2.3. Forn > 1, we have fno=2" fu1+ (=1)".
Proof. We provide two proofs here.
First proof. From the Equation (4) and , we have foo =1, fo. =0, and
fro =2 fo1 = fno—2n"- fu_1p

=2n—1) fumi0+2(n—1)- fao10—2n - faap0
= —fa10+2(n = 1) fa20
= —foc10+2- fuoin
=(-1)- (fn—l,o -2 fn—l,l)

-+ = LB fo 0 il ;)

Second proof. We give a combinatorial proof here. It is obvious that the identity

holds for n = 1. The statement will then follow recursively by the identity

oo — 2 fo i e T [, Vn>2. (7)

We now give a combinatorial proof for Equation . Let 2 - F,, ; denote the set
2-F,1:= {(5,0): ee{+,—-},0€ Fm},

and 2 - H,, ; be the subset of 2 F,,; consisting of the elements (¢, o) with o(n) # n.
We now construct a map 6 from 2 - H,,; into F),o. For (¢,0) € 2- H,,; and ¢ being

the fixed point of o, let f(e, o) be the signed permutation on [n] with 2 colors given

by
o(n), if k=14

o(k), otherwise



For example, if 0 = 24351 with the fixed point 3, then 6(—,0) = 24153.
Clearly 6 is an injective map into F,,o. The derangements m € Fj, o which is not in

the image of 6 must assume one of the two following forms:

e 7(n) = |n|. By deleting the trailing |n| from the word form of 7, we obtain a

derangement in F;,_; o.

e / := |m(n)| < n, and 7(¢) = n. In this case, these derangements can be
mapped bijectively to 2 - F,,_; 1 by setting 7 — (e, 7’), where € := sgn(7(n)),

and
7'(k) := k)bt L 1<k<n-1
l, if k= ¢
Besides, the elements in 2 - £, ; which are not mapped by 6 are those (¢, o) such
that o(n) = n; by deleting the trailing n, it is easy to see that the number of those

elements are 2 - f,,_1 . By interpreting ¢ being a bijection between subsets of I}, o

and 2 - I, 1, we see that
fn,O - (fnfl,O T2 fnfl,l) =2 fn,l -2 fnfl,O
which is clearly equivalent to Equation , and the theorem is now proved. []

From the second proof of Theorem 2.3, we construct an almost bijection 6,, from
2F,1 to F,o. Let (e,0) € 2F,, 1, where ¢ € {+,—} and ¢ € F),;. The action of 6,

on (g,0) depends on the fixed point o as follows.

e FIX(0) ={j}, j <n. We simply define

o(n), if k=j,
(bu(e,0)) (k) = o(k), ifk #j,n, 1<k<n.
-3, itk=n,



Fn._ﬂ 2 'Fn__l (i:Fn__l)

ocny)=xLoroc(f)=n — FIX(0)={n}, 6(+.0)
o(n)=n YRS FIX(o)={n}, 6(-.0)
0(2-H,)) © FIX(o)#{n}, 2-H,,

Figure 1: Bijection between sets F}, o and 2 - F}, ;

For example, if 0 = 24351 with the fixed point j = 3, by exchanging j with
o(n), then we have 05(+,0) = 24153, and 05(—,0) = 24153. Clearly 6 is

an injective map into Fén) i
FIX(0) = {n}. The sign ¢ will be significant in defining 6,, as shown below.

oLk QI £ 25N,
(@) (On(—,0))(k) == (k) z 1<k<n.

—n, ifk=mn,
(b) When £ = +, we first purge the fixed point n from o to obtain the derange-
ment ¢’ = 0105 ...0,_1, then we look for the inverse image 0, ',(c") = (¢/, 7),
where m € F,,_; 1 (whenever it is possible). Let j be the fixed point of 7. Then

we set
w(k), i k£ j,n,
(On(+,0)) (k) =3 n,  ifk =3, 1<k<n.
g-j, ifk=n,

For example, if 0 = 2314 with the fixed point 4, then 04(—,0) =2314. And

by deleting the fixed point 4, we have 4(+,0) from the word form of o, we

10



obtain a derangement 7 = 231 € F3p, then we know 605 '(7) = (—,132) in

F31, so we can construct the map 0,(+,1324) =4321.

The correspondences Fh <+ F»q and F3 o <+ F3; are shown below for the cases
n = 2 and n = 3, where an element o € By and an element m € Bj is represented

by the sequence o = 0109 and ™ = mymoms, respectively:

Foo < (&£, F)

21 (+,12)

21 (—,12)

21 (+,12)

1B (—,12)

91 o
Fs0 < (£, F31) | Fs0 < (£, F31) | F50 < (%, F31)
321 (+,123) | 231 (+,132) | 321 (+,213)
321 (—,123) | 231 (—,132) | 213 (—,213)
132 (+,123) | 231 (+,132) | 312 (+,321)
132 (—,123) | 231 (—,132) | 312 (—,321)
132 (4+,123) | *** (+,213) | 312 (+,3271)
123 (—,123) | 213 (—,213) | 312 (—,321)
231 (+,132) | 132 (+,213) | 312 (+,321)
231 (—,132) | 213 (—,213) | 312 (—,321)
231 (+,132) | 321 (+,213) | 312 (+,321)
231 (—,132) | 213 (—,213) | 312 (—,327)

Elements of B, can be thought as permutations whose letters are painted by

either of two colors, next, we consider the elements in & which is painted by r

11



colored in §,,. Define

F7ETI<): ={o € 61(17"); fix(o) = k}, f(rlz = |F7ET,2], k=0,1,...,n.

Elements in F( 3 are also known as the derangements in . By the same reasoning

as in Propsition , we see that fnfk = (1) f"'n — k0.
An argument similar to Theorem can be used to prove the recurrence of the

derangement numbers f o as follows:

Theorem 2.4. For r € N. The sequence <f(73>n satisfies the following recursion:

fgg:(Tn—l)‘fé?Lo“‘?"‘( 1) - f 22,05 Vn>2. (8)

Proof. Let o € & be the cycle notation. As before, we consider to generate o

from elements in F\", oand F T)Q v

(r)

1. If elements in F,"”, 0> We can insert a cycle (n), the letter n can be painted by

(r —1) colors to get (r —1) - f(i)m elements in Férg Or we can put the letter

n

n which is painted by r colors behind the letter 7, j = 1,2,...,n — 1, so we can

getr-(n—1)- f(r_)m elements in F(’:g

n

2. If elements in Fy_)lo, each element can be inserted a cycle which is (5 n),
j=1,2,...,n—1, and the letter n can be painted by r colors. Standardize, we

can get r-(n—1) - fy_)zo elements in F(fg

For n > 2 we have

fvgrc)) =(r—1)- fé@l,o—FT'(n— 1)'fr(:;)1,0+7‘ “(n—1)- fr(LT;)QO

=(n-1)- f7(17;)1,0 +r-(n—=1)- f?ET—)Q,O

12



Theorem 2.5. For n € N, we have:

fug =+ (=1 (9)
Proof. The proof is analogous to that of Theorem [2.3] Using Theorem 2.4 we get
féf% —-r n? = fntﬂ()) —m :—)1,0

= ((7"” - 1>fr(£)1,0 +r(n — 1)f7(22,0) - TnfT(L”;)l,O

= (7, — = 1)) (10)
= —(fr(f—)lo_r ér—)ll)
== (=) (folg = rfs]) = (=1)"(1 - 0) = (=)™

0

We know the generating function of d,, is given by f(z) = >_ dn% = f:; In the
n>0

end of this section, we prove the analogous closed form for the generating function

of f(r)

Theorem 2.6. The generating function off 0 18

o)=Y fs =1 (1)

rr
n>0

Proof. Let a, = f (r()], and we have the recurrences for the number of a, is ag = 1

n,

and a, =7r-n-a,_1+ (—1)" for n > 0. A routine computation shows that

’I’L

Zan Zn T Gy 1—+Z —'

n>1 n>1 n>1

Flz)—1=r-z-F(x)+ (e " —1). (12)

F)(1—rz)=¢e".

13



Notice that the special case r = 1 reduces to the generating function of the

number of derangements of the ordinary permutations.

3 Alternating permutations with maximal num-
ber of fixed points in hyperoctahedral groups

Han and Xin have extended alternating permutations with maximal number
of fixed points [HX09] in &,,. A permutation 7 = m m --- 7, € &, is said
to be alternating (respectively reverse alternating) if m > mo < w3 > my < -+~
(respectively m < my > w3 < my > +--). In this section, we consider the subset
G, of B, which consists of “snakes” (a.k.a. alternating) in B,, i.e., ¢ € G, when
o(l) > 0(2) <0o(3) >o0(4) < ---. We know that |G, | = 2" - E,, [KPP94] , where
E,, is the n'® Euler number (1, 1, 1, 2, 5, 16, 61, ...). Again we define

n-+1

Gn,k = {U € Gn: le(O’) = k}? Ink = |Gn,k|7 k= O, 1» R L 9

I.

Theorem 3.1. We have
Jon+1,n+1 = G2nn = fn,o-
Proof. 1f o € G,, has maximal fixed points, then exactly one of 2 —1 and 21 is fixed
by o for each 1 <i < L%J, in particular o(2n +1) =2n+ 1 if 0 € Goyr1n41- By
shrinking 2n + 1 from o, we obtain a permutation ¢’ € Gy, ,. Hence the equality
92n.n = Gon+1n+1 18 already established.
Now a map G, ,, — F, ¢ is easily constructed by removing the fixed points of o

and standardizing the remaining letters, as seen in the following example:

13(10)4867295 — 3(10)825 +~ 254713

14



Table 2: Numbers of alternating permutations with k fixed points in B,,

n\ k 0 1 2 3 4
0 1

1 1

2 3 1

3 10 5 1

4 50 25 5

5 312 156 39 5

6 | 2400 1200 275 29
7 | 21168 10584 2646 389 29

For the element o = 01 03 03 04+ 09, in Gg,, each pair of letters oop_1 ook, k =
1,2,--- ,nis a decent set and have only one fixed points, then the resulting permu-
tation cannot have any fixed point.

Next, we need to establish the inverse for the map above, i.e., from F, , back to
Gon . Firstly 2n — 1 must be a fixed point, hence n or m must correspond to 2n
or 2n, respectively. If 2n is present, then it must be filled at the left position of its
block, hence the right position of that block is a fixed point; if 2n is present, then it
must be filled at the right position of its block, hence the left position of that block
is a fixed point; hence we know what the next (unfixed) number (and its sign) would
be. In general, once we know the unfixed number of this current block, then we know
it should be put at the left or right position of the next block if each block must
be [big]-[small]. And for the element m = m; 7o -+ To;_1 Mo Moir1 T2ite *+* Ton,
if my; 1 and 7y, are fixed points, then mo; 11 > o1 > mo;; if o1 and mo;. o are

fixed points, then my; 11 > o0 > mo; 1 > mo;; if mo; and me;1 are fixed points, then

15



Toi+1 > T2i; if me; and T9i42 are fixed points, then T9i4+1 > T2i42 > Tai, SO that the
resulting permutation 7 is a snake (i.e. alternating). Just keep going until the cycle
is finished. Now find the rightmost unfilled block, its left position must be a fixed

point, and trace the cycle, so on and so forth, so we are done. O

Example 3.2. Consider 21453 € F5,. The recovery is made through the following

procedure:

x k[ x x|[x x| x  x|9 x| 5~ (10)
* ok |k ok |k x| (10) 8|9 x||4—T
* % x5 T[(10) 8|9 x||3+—6
* *x|* x5 T7/(10) 8|9 6

* % |3 *x|5 T[(10) 8|9 6||2—4
1 4|3 |5 7|(10) 8|9 6|12
1 4(3 2|5 7|(10) 8|9 6

So, we have the bijection between the alternating permutations in By, (and also
By, +1) with maximal numbers of fixed points and the derangements in B,,.

This sequel also can extend to Fqgr,z Consider the subset GSL of Fér,z which con-

(r

sists alternating permutations in FX,Z, define gn) = |G5:3€|, we also have ggl) it =

gg;),n = f:g, which can be verified analogously as in Theorem 3.1.

4 Strictly decreasing permutations in Gg)

In this section, we discuss another subset in &Y. We regard C, as the set
{0,1,...,7 — 1} with orders inherited from Z. An element o € S\ can be repre-
sented in the window notation: o = 10 ..0,, where each o; is a pair (¢;, j;) with

c € C. and j € [n]. We use an order > on the set C, x [n] found in Bagno and Gar-

16



ber [BGO6|: declaring (cq,71) > (c2,j2) when either ¢; < ¢z, or ¢; = ¢ but j; > js.
A permutation o € &\ is called strictly decreasing if o(1) = o(2) = --- = o(n).
Notice that this order is different from that in Section 3, nonetheless an obvious
isomorphism exists between these orders.

Let S, x be the set of all r-colored strictly decreasing permutations on [n] with
k fixed points and the number of elements in S, denoted by s,, ;. If a permutation
has two or more fixed points, there must be an ascent between any pair of those
fixed points, therefore it is impossible for any strictly decreasing permutation in s
with two or more fixed points. Henceforth we know the number of fixed points of
o € Sy is either 0 or 1, then a simple count gives s, + s,1 = r".

Let S, be the set of all strictly decreasing derangements in S and Sn.1 be the
set of all strictly decreasing permutations with exactly one fixed point in S, Now
we give the enumerative results on these strictly decreasing permutations subject to

the numbers of fixed points.
Theorem 4.1. We have:

(i) Formn > 1, we have S0 = Spi+1.1-

(17) Let t € [n]. The number of permutations in s, 1 with t being the fized point is

—t n .y
(:: 1) (r —1)" 2+ =L Therefore s,1 = Z (n )(r — qyrRtHlptel

p— t—1

(i13) Forn > 3, we have spo = (r —1) - Su_10+ 7+ Sp—2p0-

(itv) The generating function of s, is

o0

n 1
9(2) _an’oz Sl (r—1)z—r2%

n=0

Proof. (i) Let 0 € S,411, we can remove the only fixed point and standardize

the remaining letters, we have a derangement in S, . On the other hand, let

17



(i)

(iii)

(iv)

T € S0, We can insert a fixed point £ right before the earliest deficiency of ,
before we insert the fixed point k, we need to destandardize the letters (i) if

|7(7)| > k, then we can get the element in S,11 .

Let 0 € S,,1 with the only fixed point ¢, t € [n]. The letters o(1),...,0(t —1)

n—t

t—l) possible

can be chosen from ¢ + 1,...,n without any color; there are (
choices. For those letters behind o(t), it can be colored by all r colors if its
absolute value is less than ¢, but only by » — 1 colors if otherwise. By the

multiplication principle, the number of strictly permutations in S, ; with ¢

"\ /n—t
being the only fixed point is Z (:Z 1) (r — 1) 2ttt
t=1

By (i), for n > 3, we have

Snisa =1 =7 - (sal10+ Sn—11)
Sn,0 . Sp—10=T" (Sn—l,O al 3n—2,0) (13)

Spo =(r—1)Sp_10+ 7" Sn—20

Let
o0 o
g(z) = g Sp02" = E Sp+1,12".
n=0 n=0

Using the result of s, = r", we have

[ee] o
n n ]'
Spo0% T Sp1z =
1—1rz
n=0 n=0

(o) o 1
n=0 n=0
_ 1 (14)
o(2) + 20(2) = 7= —
1
9(z) = (1—rz)(1+2)
1

:1—(r—1)z—rz2
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]

As an example of (i), consider the permutation 7 = 2 1 3¢ Ss0, we should put
the fixed point 2 right before the element 1. Before we insert the fixed point 2, we
need to add 1 to the absolute value of the letters 7(i) which satisfy | (i)] > 2. As a
result we reach the element 3 21 4 € S41. On the other hand, forp =321 1c Saa,
by removing the fixed point 2 and standardizing the remaining letters, we have a
derangement 2 1 3 e S30. We construct a bijection between elements with exactly

one fixed point in 5,41 and derangements in S, o.

By Theorem 4.1 (iv), we have the generating function of s, o, then we can get

Theorem 4.2. The number of strictly decreasing derangements in S, ¢ is

1 n+1 n
srio = =+ (L (1)), (15)

Proof. In Theorem 4.1 (iv), we have

C 1
D sno = 2
— l1—(r—=1)z—-rz

1
N (I1+2)(1—rz)
B 1 ( 1 n T )
Cr4 1142z 1—rz (16)
1 oo oo
_ n._n n+1_n
_r+1(nz%(—l)z +;;T 2")

So we have s, = —5 - ("' + (=1)"). O

The number of derangements in G,,, we have the harder recursion d,, = nd,,_1 +
(—1)™, and in section 2, we already prove the recursion f,, 0 = rfu,1 + (—1)" in

6;”. In the end of this section, we have

19



Corollary 4.3. Forn € N, we have:
Spo =T Sn1+ (—=1)". (17)

Proof. By Theorem 4.1 (iv), we have

And we also have

Z(sno—i-snlz —Zr = 1—rz) (18)

n=0

Therefore,

= A\ [ 1
nZ:OSn,1Z UL T2 R -1 + 2)

P R WA
i (1—7“2)(1—1—2)

V40 —7“2)( 2)

> 1 rz (19)
; (sn0 =7 5n)2" = G ST T T+ 2)
.
14z
=> (=12
O

5 Conclusion and Discussion

In this study, we generalize the enumeration problems on derangements and
permutations with only one fixed point to colored permutations. In fact, the rela-

tionship between the derangements in S and the elements with exactly only one
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fixed point in S can be classified with the descent sets. At first we observed the
phenomenon on the enumeration on derangements for alternating permutations in
B, i.e. the numbers in the first column of Table [2| are twice of those in the second
column. It could be thought the special case of the following setting.

For each subset J of [n — 1], define

FN)7 = {0 € & fix(0) = k and DES = J},

7= FO k=01, 0.

For example, the snakes in B,, have the descent sets {1,3,5,7,9,...} N [n —1].
Using the mathematical software SAGE, we enumerate the cardinalities fg,z‘] and

find the following relations:

(T)v‘] n 1
e L) AN — 1);
0 _ \1 Sl [n —1] 20)

e fhd if J £ [n—1].

The case r = 1, which is the ordinary permutations, has been dealt with by
Foata and Han [FHO§|. They found a bijection on &,, that transforms the pair of
statistics (fix, DES) to (pix, IDES) [DW93]. In section 4, we have already explained
the situation with f,, o =7 f,1 + (—1)", which corresponds to the case J = [n —1].
We hope the we can find the correct notions for pixed points and IDES sets of colored
permutations that enables us to establish the identity for J # [n — 1] in the

future.
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