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Permutations with 0 or 1 fixed point in

hyperoctahedral groups

Chou Yu-Jen

Abstract

In this thesis, we extend the work of fixed points on the permutations of

[n] in two directions: firstly, we discuss the fixed points problems of hyper-

octahedral groups Bn; secondly, elements in Bn can be thought the letters

are painted by two colors, it can be generalized with r colors. Moreover, we

discuss the fixed point problems in the subsets alternating permutations of Bn

and strictly decreasing permutations of S
(r)
n . After removing all fixed points

and standardizing the remaining letters, we focus on colored permutations

with 0 or 1 fixed point. We obtain combinatorial correspondence between

derangements and elements with exactly one fixed point together with their

recursions and generating functions.

Keywords. Derangements, hyperoctahedral groups, alternating permu-

tations, colored permutations

1 Introduction

For any positive integer n, denote the set {1, 2, . . . , n} by [n]. Given a permuta-

tion σ on [n], a label k ∈ [n] is called a fixed point of σ if and only if σ(k) = k. A
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permutation of [n] is called a derangement if it has no fixed point. Let dn denote

the number of derangements of [n]. It is well-known (cf. [Tuc80]) that the sequence

dn satisfies an easier recursion

dn = (n− 1)(dn−1 + dn−2), n ≥ 2, (1)

and also a harder recursion

dn = ndn−1 + (−1)n, n ≥ 1. (2)

Combinatorial proofs of the latter identity (2) were given by Remmel [Rem83]

and Wilf [Wil84] independently. And the generating function of dn is also well-

known [WG16]:

f(x) =
∑
n≥0

dn
xn

n!
=

e−x

1− x
(3)

Ordinary permutations on [n] can be thought as painted by only one color.

Bagno ([Bag04, BG06]) generalizes this notion that allows r colors to be painted on

permutations, which results in the colored permutations. In this article, we would

like to generalize the notion of derangements to the colored permutations.

We first introduce the groups in Bn and S
(r)
n . Let Bn be the hyperoctahe-

dral group of order n, that is, elements in Bn are permutations σ on the set

{±1,±2,±3, · · · ,±n} such that σ(−i) = −σ(i) for all i ∈ [n], we use the nota-

tion ı := −i in this article [FH05]. In particular, elements of Bn can be thought as

permutations whose letters are painted by either of two colors. Therefore when r

colors are available to paint the letters, we get the wreath product S
(r)
n of the cyclic

group Cr of order r with the permutation group Sn (cf. [Bag04]). We call an index

i ∈ [n] is called a fixed point of σ ∈ Bn or σ ∈ S
(r)
n if σ(i) = i and i is uncolored, (in

the case of Bn, we will refer the first color as uncolored.) A permutation σ without
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fixed points in Bn or S
(r)
n is still called a derangement. For a permutation σ in Bn

or S
(r)
n , we denote the set of fixed points of σ by FIX(σ), and fix(σ) is its cardinality.

There are two ways to represent the elements in Bn and S
(r)
n in this paper. First

is the window notation and the other is cycle notation. In the window notation,

permutations in Bn can be written as σ = σ1σ2 · · ·σn where σi = σ(i); and we can

also denote σ ∈ Bn with cycle notation introduced by Reiner [Rei93]: each cycle

(l1, l2, . . . , lk, . . . , lj) means σ(|li|) = l(i+1), 1 ≤ i ≤ j − 1 and σ(|lj|) = l1 where

l1, l2, . . . , lj ∈ {±1,±2, . . . ,±n}, |lj| 6= |lk| if j 6= k.

For example, consider the element

σ =

1 2 3 4 5

3 2 1 4 5

 ∈ B5.

Its window notation is σ = 3 2 1 4 5 ∈ B5, and its cycle notation is written by

σ = (1 3)(2)(4)(5). Its only fixed point is 2.

As like as elements in Bn, we also can denote the elements in S
(r)
n with window

notation and cycle notation. Elements in S
(r)
n will be written in the window notation

σ = σ1σ2 . . . σn, where each σi is a pair (ci, ji) with c ∈ Cr and j ∈ [n]. We can

also write σ ∈ S
(r)
n in the cycle notation: each cycle (l1, l2, · · · , lk, · · · , lj) means

σ(|li|) = l(i+1), 1 ≤ i ≤ j − 1 and σ(|lj|) = l1 where l1, l2, · · · , lj on [n] with r colors,

|lj| 6= |lk| if j 6= k.

For example, consider the element

σ =

1 2 3 4 5

3 2 1 4 5

 ∈ S
(3)
5 .

Its window notation is σ = 3 2 1 4 5 ∈ S
(3)
5 , and its cycle notation is σ =

(1 3)(2)(4)(5). Its only fixed point is 2.
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This article begins with focus on derangements in Bn and S
(r)
n . First, we count

the numbers of elements with k fixed points in Bn. By removing all fixed points

and standardizing [FH08] the remaining letters from a permutation in Bn, we can

get a derangement on fewer letters. For instance, let us consider the permutation

π = 5 2 3 4 1 ∈ B5 with FIX(σ) = {2,3}. By removing all fixed points, we have

σ = 5 4 1, then we standardize the remaining letters σ, we obtain a derangement

τ = 3 2 1 ∈ B3. With this procedure, we realize that enumeration on derangements

is essential.

Formulas similar to Equations (1), (2) and (3) are obtained for hyperoctahedral

groups. We prove the easier recursion of the derangement numbers in Bn by using

the cycle notation. Similarly, it can be extended to an easier recurrence of the

derangement numbers in S
(r)
n . Next, we prove the harder recursion in two different

ways, we use the easier recursion to prove and another way is the combinatorial

proof by removing all fixed points and standardizing [HX09] the remaining letters

to get a bijection. Finally, we get the correspondence between the derangements in

Bn and elements with exactly one fixed point in Bn. Then, we extend the results to

S
(r)
n and get the generating function which is similar to the generating function of

dn in the end of section 2.

At the start of this project, we observed that the relationship between the num-

ber of derangements in Bn and the number of elements in Bn with fix(σ) = 1. Next

we consider two subsets of Bn and S
(r)
n . In Section 3, we denote the subset of al-

ternating permutations (“snakes”) by Gn,k, that is, the elements σ ∈ Bn satisfying

σ(1) > σ(2) < σ(3) > σ(4) < · · · and having k fixed points. We enumerate the per-

mutations with maximal number of fixed points in Gn,k. We discover an interesting

identity between the derangements in Bn and the elements with maximal number
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of fixed points in G2n and G2n+1. To conclude Section 3, we give a combinatorial

bijection for that identity.

Another interesting subset of S
(r)
n is the subset of strictly decreasing permuta-

tions, which we discuss in Section 4. By strict decrease we employ an order � on

the set Cr × [n] is found in Bagno and Garber [BG06]. It is easy to see that any

strictly decreasing permutation can have at most 1 fixed point, therefore we only

need to enumerate the set of all strictly decreasing derangements in S
(r)
n , which is

denoted by Sn,0, as well as the set of all strictly decreasing permutations with only

one fixed point in S
(r)
n , which is denoted by Sn,1. We give some enumerative results

like the number of elements in Sn,0, the connection between Sn,0 and Sn+1,1, and

we give the recursion and the generating function. In the end, we obtain a formula

analogous to Equation (2) for the strictly decreasing permutations in S
(r)
n .

The paper is organized as follows. In Section 2, we discuss the derangements

in hyperoctahedral groups together with some generalization. In Section 3, we

give bijections between alternating permutations in B2n with maximal number of

fixed points and the derangements in Bn. In Section 4, we enumerate the strictly

decreasing permutations in the wreath product S
(r)
n and provide their generating

functions. We end this paper with some comments and future work in Section 5.

2 Derangements in hyperoctahedral groups

Our task in this section is to extend the easier recursion like Equation (1) and

the harder recursion like Equation (2) in Bn and S
(r)
n , finally we have the generating

function like Equation (3) in S
(r)
n .
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We first classify the permutations in Bn by their numbers of fixed points. Define

Fn,k := {σ ∈ Bn : fix(σ) = k}, fn,k := |Fn,k|, k = 0, 1, . . . , n.

Elements in Fn,0 are also known as the derangements in Bn. Below is the table of

the first few values of fn,k:

Table 1: Statistics fix on hyperoctahedral groups Bn

n \ k 0 1 2 3 4 5 6 7

0 1

1 1 1

2 5 2 1

3 29 15 3 1

4 233 116 30 4 1

5 2329 1165 290 50 5 1

6 27949 13974 3495 580 75 6 1

7 391285 195643 48909 8155 1015 105 7 1

We are going to prove a few identities involving the sequence fn,k. By picking out

all fixed points and standardizing the remaining letters, the following result follows

immediately.

Proposition 2.1. Let n, k be integers with 0 ≤ k ≤ n. Then we have

fn,k =

(
n

k

)
fn−k,0. (4)

Proof. Let σ ∈ Bn have k fixed points. The number of ways to choose k fixed points

from n is
(
n
k

)
. By removing all fixed points of σ and standardizing the remaining

letters, we obtain a derangement in fn−k,0.
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The derangement numbers satisfy the harder recurrence dn = ndn−1 + (−1)n.

T. Benjamin and Joel Ornstein [BO17] used the cycle notation to present a simple

combinatorial proof, and we use the similar idea to prove the recurrence of the

derangement numbers fn,0 as follows.

Theorem 2.2. The sequence 〈fn,0〉n satisfies the following recursion:

f0,0 = f1,0 = 1; fn,0 = (2n− 1)fn−1,0 + 2(n− 1)fn−2,0, ∀ n ≥ 2. (5)

Proof. Let σ ∈ Fn,0 be written in the cycle notation. We consider how to generate

σ from elements in Fn−1,0 and Fn−2,0:

1. In Fn−1,0, we can insert a cycle (n) and get fn−1,0 elements in Fn,0. Or we can

put n or n behind n−1 letters within any cycle, so we can get (n−1) ·2 ·fn−1,0

elements in Fn,0.

2. Elements in Fn−1,1 can be inserted n or n into the cycle (j), where j ∈

{1, 2, . . . , n − 1}, and we have n − 1 choice of fixed point, by removing the

only fixed point and standardizing, we have element in Fn−2,0, so we can get

(n− 1) · 2 · fn−2,0 elements in Fn,0.

For n ≥ 2, we have

fn,0 = fn−1,0 + (n− 1) · 2 · fn−1,0 + (n− 1) · 2 · fn−2,0

= (2n− 1)fn−1,0 + 2(n− 1)fn−2,0

The previous result is parallel to the recursive formula satisfied by dn like Equa-

tion (1). Next we prove the result for fn,0 which is analogous to Equation (2).
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Theorem 2.3. For n ≥ 1, we have fn,0 = 2 · fn,1 + (−1)n.

Proof. We provide two proofs here.

First proof. From the Equation (4) and (5), we have f0,0 = 1, f0,1 = 0, and

fn,0 − 2 · fn,1 = fn,0 − 2n · fn−1,0

= (2n− 1) · fn−1,0 + 2(n− 1) · fn−1,0 − 2n · fn−2,0

= −fn−1,0 + 2(n− 1) · fn−2,0

= −fn−1,0 + 2 · fn−1,1

= (−1) · (fn−1,0 − 2 · fn−1,1)

= · · · = (−1)n · (f0,0 − 2 · f0,1)

= (−1)n · (1− 0)

= (−1)n

(6)

Second proof. We give a combinatorial proof here. It is obvious that the identity

holds for n = 1. The statement will then follow recursively by the identity

fn,0 − 2 · fn,1 = 2 · fn−1,1 − fn−1,0, ∀ n ≥ 2. (7)

We now give a combinatorial proof for Equation (7). Let 2 · Fn,1 denote the set

2 · Fn,1 :=
{

(ε, σ) : ε ∈ {+,−}, σ ∈ Fn,1

}
,

and 2 ·Hn,1 be the subset of 2 · Fn,1 consisting of the elements (ε, σ) with σ(n) 6= n.

We now construct a map θ from 2 ·Hn,1 into Fn,0. For (ε, σ) ∈ 2 ·Hn,1 and ` being

the fixed point of σ, let θ(ε, σ) be the signed permutation on [n] with 2 colors given

by

(
θ(ε, σ)

)
(k) :=


σ(n), if k = `;

ε · `, if k = n;

σ(k), otherwise

1 ≤ k ≤ n.
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For example, if σ = 2 4 3 5 1 with the fixed point 3, then θ(−, σ) = 2 4 1 5 3.

Clearly θ is an injective map into Fn,0. The derangements π ∈ Fn,0 which is not in

the image of θ must assume one of the two following forms:

• π(n) = |n|. By deleting the trailing |n| from the word form of π, we obtain a

derangement in Fn−1,0.

• ` := |π(n)| < n, and π(`) = n. In this case, these derangements can be

mapped bijectively to 2 · Fn−1,1 by setting π 7→ (ε, π′), where ε := sgn(π(n)),

and

π′(k) :=

 π(k), if k 6= `;

`, if k = `;
1 ≤ k ≤ n− 1

Besides, the elements in 2 ·Fn,1 which are not mapped by θ are those (ε, σ) such

that σ(n) = n; by deleting the trailing n, it is easy to see that the number of those

elements are 2 · fn−1,0. By interpreting θ being a bijection between subsets of Fn,0

and 2 · Fn,1, we see that

fn,0 −
(
fn−1,0 + 2 · fn−1,1

)
= 2 · fn,1 − 2 · fn−1,0

which is clearly equivalent to Equation (7), and the theorem is now proved.

From the second proof of Theorem 2.3, we construct an almost bijection θn from

2Fn,1 to Fn,0. Let (ε, σ) ∈ 2Fn,1, where ε ∈ {+,−} and σ ∈ Fn,1. The action of θn

on (ε, σ) depends on the fixed point σ as follows.

• FIX(σ) = {j}, j < n. We simply define

(
θn(ε, σ)

)
(k) :=


σ(n), if k = j,

σ(k), if k 6= j, n,

ε · j, if k = n,

1 ≤ k ≤ n.
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Figure 1: Bijection between sets Fn,0 and 2 · Fn,1

For example, if σ = 2 4 3 5 1 with the fixed point j = 3, by exchanging j with

σ(n), then we have θ5(+, σ) = 2 4 1 5 3, and θ5(−, σ) = 2 4 1 5 3. Clearly θ is

an injective map into F
(n)
0 .

• FIX(σ) = {n}. The sign ε will be significant in defining θn as shown below.

(a)
(
θn(−, σ)

)
(k) :=

 σ(k), if k 6= n,

−n, if k = n,
1 ≤ k ≤ n.

(b) When ε = +, we first purge the fixed point n from σ to obtain the derange-

ment σ′ = σ1σ2 . . . σn−1, then we look for the inverse image θ−1n−1(σ
′) = (ε′, π),

where π ∈ Fn−1,1 (whenever it is possible). Let j be the fixed point of π. Then

we set

(
θn(+, σ)

)
(k) :=


π(k), if k 6= j, n,

n, if k = j,

ε′ · j, if k = n,

1 ≤ k ≤ n.

For example, if σ = 2 3 1 4 with the fixed point 4, then θ4(−, σ) = 2 3 1 4. And

by deleting the fixed point 4, we have θ4(+, σ) from the word form of σ, we
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obtain a derangement π = 2 3 1 ∈ F3,0, then we know θ−13 (π) = (−, 1 3 2) in

F3,1, so we can construct the map θ4(+, 1 3 2 4) = 4 3 2 1.

The correspondences F2,0 ↔ F2,1 and F3,0 ↔ F3,1 are shown below for the cases

n = 2 and n = 3, where an element σ ∈ B2 and an element π ∈ B3 is represented

by the sequence σ = σ1σ2 and π = π1π2π3, respectively:

F2,0 ↔ (±, F2,1)

2 1 (+, 12)

2 1 (−, 12)

2 1 (+, 12)

1 2 (−, 12)

2 1 **

F3,0 ↔ (±, F3,1) F3,0 ↔ (±, F3,1) F3,0 ↔ (±, F3,1)

3 2 1 (+, 1 2 3) 2 3 1 (+, 1 3 2) 3 2 1 (+, 2 1 3)

3 2 1 (−, 1 2 3) 2 3 1 (−, 1 3 2) 2 1 3 (−, 2 1 3)

1 3 2 (+, 1 2 3) 2 3 1 (+, 1 3 2) 3 1 2 (+, 3 2 1)

1 3 2 (−, 1 2 3) 2 3 1 (−, 1 3 2) 3 1 2 (−, 3 2 1)

1 3 2 (+, 1 2 3) *** (+, 2 1 3) 3 1 2 (+, 3 2 1)

1 2 3 (−, 1 2 3) 2 1 3 (−, 2 1 3) 3 1 2 (−, 3 2 1)

2 3 1 (+, 1 3 2) 1 3 2 (+, 2 1 3) 3 1 2 (+, 3 2 1)

2 3 1 (−, 1 3 2) 2 1 3 (−, 2 1 3) 3 1 2 (−, 3 2 1)

2 3 1 (+, 1 3 2) 3 2 1 (+, 2 1 3) 3 1 2 (+, 3 2 1)

2 3 1 (−, 1 3 2) 2 1 3 (−, 2 1 3) 3 1 2 (−, 3 2 1)

Elements of Bn can be thought as permutations whose letters are painted by

either of two colors, next, we consider the elements in S
(r)
n which is painted by r
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colored in Sn. Define

F
(r)
n,k := {σ ∈ S(r)

n : fix(σ) = k}, f
(r)
n,k := |F (r)

n,k|, k = 0, 1, . . . , n.

Elements in F
(r)
n,0 are also known as the derangements in S

(r)
n . By the same reasoning

as in Propsition 2.1, we see that f
(r)
n,k =

(
n
k

)
f (r)n− k, 0.

An argument similar to Theorem 2.3 can be used to prove the recurrence of the

derangement numbers f
(r)
n,0 as follows:

Theorem 2.4. For r ∈ N. The sequence 〈f (r)
n,0〉n satisfies the following recursion:

f
(r)
n,0 = (rn− 1) · f (r)

n−1,0 + r · (n− 1) · f (r)
n−2,0, ∀ n ≥ 2. (8)

Proof. Let σ ∈ S
(r)
n be the cycle notation. As before, we consider to generate σ

from elements in F
(r)
n−1,0 and F

(r)
n−2,0,

1. If elements in F
(r)
n−1,0, we can insert a cycle (n), the letter n can be painted by

(r− 1) colors to get (r− 1) · f (r)
n−1,0 elements in F

(r)
n,0 . Or we can put the letter

n which is painted by r colors behind the letter j, j = 1, 2, ..., n− 1, so we can

get r · (n− 1) · f (r)
n−1,0 elements in F

(r)
n,0 .

2. If elements in F
(r)
n−2,0, each element can be inserted a cycle which is (j n),

j = 1, 2, ..., n− 1, and the letter n can be painted by r colors. Standardize, we

can get r · (n− 1) · f (r)
n−2,0 elements in F

(r)
n,0 .

For n ≥ 2 we have

f
(r)
n,0 = (r − 1) · f (r)

n−1,0 + r · (n− 1) · f (r)
n−1,0 + r · (n− 1) · f (r)

n−2,0

= (rn− 1) · f (r)
n−1,0 + r · (n− 1) · f (r)

n−2,0
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Theorem 2.5. For n ∈ N, we have:

f
(r)
n,0 = rf

(r)
n,1 + (−1)n. (9)

Proof. The proof is analogous to that of Theorem 2.3. Using Theorem 2.4, we get

f
(r)
n,0 − rf

(r)
n,1 = f

(r)
n,0 − rnf

(r)
n−1,0

=
(
(rn− 1)f

(r)
n−1,0 + r(n− 1)f

(r)
n−2,0

)
− rnf (r)

n−1,0

= −
(
f
(r)
n−1,0 − r(n− 1)f

(r)
n−2,0

)
= −

(
f
(r)
n−1,0 − rf

(r)
n−1,1

)
= · · · = (−1)n

(
f
(r)
0,0 − rf

(r)
0,1

)
= (−1)n(1− 0) = (−1)n.

(10)

We know the generating function of dn is given by f(x) =
∑
n≥0

dn
xn

n!
= e−x

1−x . In the

end of this section, we prove the analogous closed form for the generating function

of f
(r)
n,0.

Theorem 2.6. The generating function of f
(r)
n,0 is

F (x) =
∑
n≥0

f
(r)
n,0

xn

n!
=

e−x

1− rx
(11)

Proof. Let an = f
(r)
n,0, and we have the recurrences for the number of an is a0 = 1

and an = r · n · an−1 + (−1)n for n > 0. A routine computation shows that∑
n≥1

an
xn

n!
=
∑
n≥1

n · r · an−1
xn

n!
+
∑
n≥1

(−1)n
xn

n!
.

F (x)− 1 = r · x · F (x) + (e−x − 1).

F (x)(1− rx) = e−x.

F (x) =
e−x

1− rx
.

(12)
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Notice that the special case r = 1 reduces to the generating function of the

number of derangements of the ordinary permutations.

3 Alternating permutations with maximal num-

ber of fixed points in hyperoctahedral groups

Han and Xin have extended alternating permutations with maximal number

of fixed points [HX09] in Sn. A permutation π = π1 π2 · · · πn ∈ Sn is said

to be alternating (respectively reverse alternating) if π1 > π2 < π3 > π4 < · · ·

(respectively π1 < π2 > π3 < π4 > · · · ). In this section, we consider the subset

Gn of Bn which consists of “snakes” (a.k.a. alternating) in Bn, i.e., σ ∈ Gn when

σ(1) > σ(2) < σ(3) > σ(4) < · · · . We know that |Gn| = 2n · En [KPP94] , where

En is the nth Euler number (1, 1, 1, 2, 5, 16, 61, . . . ). Again we define

Gn,k := {σ ∈ Gn : fix(σ) = k}, gn,k := |Gn,k|, k = 0, 1, . . . , bn+ 1

2
c.

Theorem 3.1. We have

g2n+1,n+1 = g2n,n = fn,0.

Proof. If σ ∈ Gn has maximal fixed points, then exactly one of 2i−1 and 2i is fixed

by σ for each 1 ≤ i ≤ bN+1
2
c; in particular σ(2n+ 1) = 2n+ 1 if σ ∈ G2n+1,n+1. By

shrinking 2n + 1 from σ, we obtain a permutation σ′ ∈ G2n,n. Hence the equality

g2n,n = g2n+1,n+1 is already established.

Now a map G2n,n → Fn,0 is easily constructed by removing the fixed points of σ

and standardizing the remaining letters, as seen in the following example:

1 3 (10) 4 8 6 7 2 9 5 7→ 3 (10) 8 2 5 7→ 2 5 4 1 3.
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Table 2: Numbers of alternating permutations with k fixed points in Bn

n \ k 0 1 2 3 4

0 1

1 1

2 3 1

3 10 5 1

4 50 25 5

5 312 156 39 5

6 2400 1200 275 29

7 21168 10584 2646 389 29

For the element σ = σ1 σ2 σ3 σ4 · · · σ2n in G2n, each pair of letters σ2k−1 σ2k, k =

1, 2, · · · , n is a decent set and have only one fixed points, then the resulting permu-

tation cannot have any fixed point.

Next, we need to establish the inverse for the map above, i.e., from Fn,0 back to

G2n,n. Firstly 2n − 1 must be a fixed point, hence n or n must correspond to 2n

or 2n, respectively. If 2n is present, then it must be filled at the left position of its

block, hence the right position of that block is a fixed point; if 2n is present, then it

must be filled at the right position of its block, hence the left position of that block

is a fixed point; hence we know what the next (unfixed) number (and its sign) would

be. In general, once we know the unfixed number of this current block, then we know

it should be put at the left or right position of the next block if each block must

be [big]-[small]. And for the element π = π1 π2 · · · π2i−1 π2i π2i+1 π2i+2 · · · π2n,

if π2i−1 and π2i+1 are fixed points, then π2i+1 > π2i−1 > π2i; if π2i−1 and π2i+2 are

fixed points, then π2i+1 > π2i+2 > π2i−1 > π2i; if π2i and π2i+1 are fixed points, then
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π2i+1 > π2i; if π2i and π2i+2 are fixed points, then π2i+1 > π2i+2 > π2i, so that the

resulting permutation π is a snake (i.e. alternating). Just keep going until the cycle

is finished. Now find the rightmost unfilled block, its left position must be a fixed

point, and trace the cycle, so on and so forth, so we are done.

Example 3.2. Consider 2 1 4 5 3 ∈ F5,0. The recovery is made through the following

procedure:

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 9 ∗ 5 7→ (10)

∗ ∗ ∗ ∗ ∗ ∗ (10) 8 9 ∗ 4 7→ 7

∗ ∗ ∗ ∗ 5 7 (10) 8 9 ∗ 3 7→ 6

∗ ∗ ∗ ∗ 5 7 (10) 8 9 6 · · ·

∗ ∗ 3 ∗ 5 7 (10) 8 9 6 2 7→ 4

1 4 3 ∗ 5 7 (10) 8 9 6 1 7→ 2

1 4 3 2 5 7 (10) 8 9 6

So, we have the bijection between the alternating permutations in B2n (and also

B2n+1) with maximal numbers of fixed points and the derangements in Bn.

This sequel also can extend to F
(r)
n,k. Consider the subset G

(r)
n,k of F

(r)
n,k which con-

sists alternating permutations in F
(r)
n,k, define g

(r)
n,k = |G(r)

n,k|, we also have g
(r)
2n+1,n+1 =

g
(r)
2n,n = f

(r)
n,0, which can be verified analogously as in Theorem 3.1.

4 Strictly decreasing permutations in S
(r)
n

In this section, we discuss another subset in S
(r)
n . We regard Cr as the set

{0, 1, . . . , r − 1} with orders inherited from Z. An element σ ∈ S
(r)
n can be repre-

sented in the window notation: σ = σ1σ2 . . . σn, where each σi is a pair (ci, ji) with

c ∈ Cr and j ∈ [n]. We use an order � on the set Cr × [n] found in Bagno and Gar-
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ber [BG06]: declaring (c1, j1) � (c2, j2) when either c1 < c2, or c1 = c2 but j1 > j2.

A permutation σ ∈ S
(r)
n is called strictly decreasing if σ(1) � σ(2) � · · · � σ(n).

Notice that this order is different from that in Section 3, nonetheless an obvious

isomorphism exists between these orders.

Let Sn,k be the set of all r-colored strictly decreasing permutations on [n] with

k fixed points and the number of elements in Sn,k denoted by sn,k. If a permutation

has two or more fixed points, there must be an ascent between any pair of those

fixed points, therefore it is impossible for any strictly decreasing permutation in S
(r)
n

with two or more fixed points. Henceforth we know the number of fixed points of

σ ∈ Sn,k is either 0 or 1, then a simple count gives sn,0 + sn,1 = rn.

Let Sn,0 be the set of all strictly decreasing derangements in S
(r)
n and Sn,1 be the

set of all strictly decreasing permutations with exactly one fixed point in S
(r)
n . Now

we give the enumerative results on these strictly decreasing permutations subject to

the numbers of fixed points.

Theorem 4.1. We have:

(i) For n ≥ 1, we have sn,0 = sn+1,1.

(ii) Let t ∈ [n]. The number of permutations in sn,1 with t being the fixed point is(
n− t
t− 1

)
(r − 1)n−2t+1rt−1. Therefore sn,1 =

n∑
t=1

(
n− t
t− 1

)
(r − 1)n−2t+1rt−1.

(iii) For n ≥ 3, we have sn,0 = (r − 1) · sn−1,0 + r · sn−2,0.

(iv) The generating function of sn,0 is

g(z) =
∞∑
n=0

sn,0z
n =

1

1− (r − 1)z − rz2
.

Proof. (i) Let σ ∈ Sn+1,1, we can remove the only fixed point and standardize

the remaining letters, we have a derangement in Sn,0. On the other hand, let
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π ∈ Sn,0, we can insert a fixed point k right before the earliest deficiency of π,

before we insert the fixed point k, we need to destandardize the letters π(i) if

|π(i)| > k, then we can get the element in Sn+1,1.

(ii) Let σ ∈ Sn,1 with the only fixed point t, t ∈ [n]. The letters σ(1), . . . , σ(t− 1)

can be chosen from t + 1, . . . , n without any color; there are
(
n−t
t−1

)
possible

choices. For those letters behind σ(t), it can be colored by all r colors if its

absolute value is less than t, but only by r − 1 colors if otherwise. By the

multiplication principle, the number of strictly permutations in Sn,1 with t

being the only fixed point is
n∑

t=1

(
n− t
t− 1

)
(r − 1)n−2t+1rt−1.

(iii) By (i), for n ≥ 3, we have

sn,0 + sn,1 = rn = r · (sn−1,0 + sn−1,1)

sn,0 + sn−1,0 = r · (sn−1,0 + sn−2,0)

sn,0 = (r − 1) · sn−1,0 + r · sn−2,0

(13)

(iv) Let

g(z) =
∞∑
n=0

sn,0z
n =

∞∑
n=0

sn+1,1z
n.

Using the result of sn,k = rn, we have

∞∑
n=0

sn,0z
n +

∞∑
n=0

sn,1z
n =

1

1− rz
∞∑
n=0

sn+1,1z
n +

∞∑
n=0

sn,1z
n =

1

1− rz

g(z) + zg(z) =
1

1− rz

g(z) =
1

(1− rz)(1 + z)

=
1

1− (r − 1)z − rz2

(14)
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As an example of (i), consider the permutation π = 2 1 3 ∈ S3,0, we should put

the fixed point 2 right before the element 1. Before we insert the fixed point 2, we

need to add 1 to the absolute value of the letters π(i) which satisfy |π(i)| > 2. As a

result we reach the element 3 2 1 4 ∈ S4,1. On the other hand, for ρ = 3 2 1 4 ∈ S4,1,

by removing the fixed point 2 and standardizing the remaining letters, we have a

derangement 2 1 3 ∈ S3,0. We construct a bijection between elements with exactly

one fixed point in Sn+1,1 and derangements in Sn,0.

By Theorem 4.1 (iv), we have the generating function of sn,0, then we can get

Theorem 4.2. The number of strictly decreasing derangements in Sn,0 is

sn,0 =
1

r + 1
· (rn+1 + (−1)n). (15)

Proof. In Theorem 4.1 (iv), we have

∞∑
n=0

sn,0z
n =

1

1− (r − 1)z − rz2

=
1

(1 + z)(1− rz)

=
1

r + 1
(

1

1 + z
+

r

1− rz
)

=
1

r + 1
(
∞∑
n=0

(−1)nzn +
∞∑
n=0

rn+1zn)

=
∞∑
n=0

(
1

r + 1
(rn+1 + (−1)n))zn

(16)

So we have sn,0 = 1
r+1
· (rn+1 + (−1)n).

The number of derangements in Sn, we have the harder recursion dn = ndn−1 +

(−1)n, and in section 2, we already prove the recursion fn,r,0 = rfn,r,1 + (−1)n in

S
(r)
n . In the end of this section, we have
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Corollary 4.3. For n ∈ N, we have:

sn,0 = r · sn,1 + (−1)n. (17)

Proof. By Theorem 4.1 (iv), we have

∞∑
n=0

sn,0z
n =

1

(1− rz)(1 + z)
.

And we also have

∞∑
n=0

(sn,0 + sn,1)z
n =

∞∑
n=0

rnzn =
1

(1− rz)
. (18)

Therefore,

∞∑
n=0

sn,1z
n =

1

(1− rz)
− 1

(1− rz)(1 + z)

=
1 + z − 1

(1− rz)(1 + z)

=
z

(1− rz)(1 + z)
∞∑
n=0

(sn,0 − r · sn,1)zn =
1

(1− rz)(1 + z)
− rz

(1− rz)(1 + z)

=
1

1 + z

=
∞∑
n=0

(−1)n · zn

(19)

5 Conclusion and Discussion

In this study, we generalize the enumeration problems on derangements and

permutations with only one fixed point to colored permutations. In fact, the rela-

tionship between the derangements in S
(r)
n and the elements with exactly only one
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fixed point in S
(r)
n can be classified with the descent sets. At first we observed the

phenomenon on the enumeration on derangements for alternating permutations in

Bn, i.e. the numbers in the first column of Table 2 are twice of those in the second

column. It could be thought the special case of the following setting.

For each subset J of [n− 1], define

F
(r),J
n,k := {σ ∈ S(r)

n : fix(σ) = k and DES = J},

f
(r),J
n,k := |F (r),J

n,k |, k = 0, 1, . . . , n.

For example, the snakes in Bn have the descent sets {1, 3, 5, 7, 9, . . . } ∩ [n − 1].

Using the mathematical software SAGE, we enumerate the cardinalities f
(r),J
n,k and

find the following relations:

f
(r),J
n,0 =

 r · f (r),J
n,1 + (−1)n, if J = [n− 1];

r · f (r),J
n,1 , if J 6= [n− 1].

(20)

The case r = 1, which is the ordinary permutations, has been dealt with by

Foata and Han [FH08]. They found a bijection on Sn that transforms the pair of

statistics (fix,DES) to (pix, IDES) [DW93]. In section 4, we have already explained

the situation with fn,0 = r · fn,1 + (−1)n, which corresponds to the case J = [n− 1].

We hope the we can find the correct notions for pixed points and IDES sets of colored

permutations that enables us to establish the identity (20) for J 6= [n − 1] in the

future.
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Séminaire Lotharingien de Combinatoire 51 (2004), B51f.

[BG06] Eli Bagno and David Garber, On the excedance number of colored permu-

tation groups, Sém. Lothar. Combin 53 (2006), B53f.

[BO17] Arthur T. Benjamin and Joel Ornstein, A bijective proof of a derangement

recurrence, FIBONACCI QUARTERLY 55 (2017), no. 5, 28–29.

[DW93] Jacques Désarménien and Michelle L. Wachs, Descent classes of permuta-

tions with a given number of fixed points, Journal of Combinatorial Theory,

Series A 64 (1993), no. 2, 311–328.

[FH05] Dominique Foata and Guo-Niu Han, Signed words and permutations II;

the Euler-Mahonian polynomials, the electronic journal of combinatorics

11 (2005), no. 2, 22.

[FH08] , Signed words and permutations, IV: Fixed and pixed points, Israel

Journal of Mathematics 163 (2008), no. 1, 217–240.

22

 



[HX09] Guo-Niu Han and Guoce Xin, Permutations with extremal number of fixed

points, Journal of Combinatorial Theory, Series A 116 (2009), no. 2, 449–

459.

[KPP94] Alexander G. Kuznetsov, Igor M. Pak, and Alexandr E. Postnikov, In-

creasing trees and alternating permutations, Russian Mathematical Sur-

veys 49 (1994), no. 6, 79.

[Rei93] Victor Reiner, Signed permutation statistics, European journal of combi-

natorics 14 (1993), no. 6, 553–567.

[Rem83] Jeffrey B. Remmel, A note on a recursion for the number of derangements,

European Journal of Combinatorics 4 (1983), no. 4, 371–374.

[Tuc80] Alan Tucker, Applied combinatorics, Wiley, 1980.

[WG16] Walter D. Wallis and John C. George, Introduction to combinatorics,

Chapman and Hall/CRC, 2016.

[Wil84] Herbert S. Wilf, A bijection in the theory of derangements, Mathematics

Magazine 57 (1984), no. 1, 37–40.

23

 


