針對心電圖資料不平衡之分類模型設計
| dc.contributor | 林政宏 | zh_TW |
| dc.contributor | Lin, Cheng-Hung | en_US |
| dc.contributor.author | 李政軒 | zh_TW |
| dc.contributor.author | Li, Zheng-Xuan | en_US |
| dc.date.accessioned | 2025-12-09T08:31:21Z | |
| dc.date.available | 2025-07-21 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | 本研究旨在探討運用深度學習技術於心電圖(ECG)訊號分類的應用潛力,以協助提升心律異常的辨識能力與早期診斷準確性。研究中提出一種基於一維殘差網路(1D ResNet-18)之模型架構,並整合卷積區塊注意力模組(CBAM)與輔助分類器(Auxiliary Classifier),以強化模型對 ECG 特徵的表達與判別能力。此架構源自電腦視覺任務,經調整後應用於一維生理訊號的分類工作,展現良好的適應性。資料處理方面採用 ADASYN 技術處理類別不平衡問題,並輔以資料增強策略以提升模型穩定性與泛化能力。模型於 MIT-BIH 公開資料集中進行驗證,結果顯示其分類表現優於傳統方法,特別是在多類別訊號辨識上具備一定的穩定性與準確性。綜合研究結果,顯示本模型結合注意力機制、輔助分類設計與資料處理策略後,能有效強化 ECG 訊號分類模型之應用能力,未來有望作為智慧健康照護輔助診斷系統的技術參考。 | zh_TW |
| dc.description.abstract | This study investigates the use of deep learning in classifying electrocardiogram (ECG) signals to support arrhythmia detection and early diagnosis. A modified one-dimensional ResNet-18 model is introduced, integrating a Convolutional Block Attention Module (CBAM) and an auxiliary classifier to enhance feature representation and classification. These mechanisms, originally designed for computer vision tasks, are adapted to one-dimensional biomedical signals with promising results. To address class imbalance, the Adaptive Synthetic Sampling Approach (ADASYN) and data augmentation are applied, improving training stability and generalization. Using the MIT-BIH public dataset, the model demonstrates more consistent and accurate performance than conventional methods, particularly for underrepresented classes.The combination of attention mechanisms, auxiliary classification, and data balancing strategies establishes a robust ECG classification framework with potential applications in intelligent healthcare and clinical decision support. | en_US |
| dc.description.sponsorship | AI跨域應用研究所 | zh_TW |
| dc.identifier | 612K0024C-47596 | |
| dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/939b752d2b38715301cd3c7a276b8230/ | |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/126200 | |
| dc.language | 中文 | |
| dc.subject | 心電圖分類 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 類別不平衡 | zh_TW |
| dc.subject | CBAM | zh_TW |
| dc.subject | 輔助分類器 | zh_TW |
| dc.subject | ADASYN | zh_TW |
| dc.subject | 資料增強 | zh_TW |
| dc.subject | ResNet-18 | zh_TW |
| dc.subject | ECG classification | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | class imbalance | en_US |
| dc.subject | CBAM | en_US |
| dc.subject | auxiliary classifier | en_US |
| dc.subject | ADASYN | en_US |
| dc.subject | data augmentation | en_US |
| dc.subject | ResNet-18 | en_US |
| dc.title | 針對心電圖資料不平衡之分類模型設計 | zh_TW |
| dc.title | Design of Classification Models for Imbalanced ECG Data | en_US |
| dc.type | 學術論文 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202500047596-109934.pdf
- Size:
- 1.81 MB
- Format:
- Adobe Portable Document Format
- Description:
- 學術論文