針對心電圖資料不平衡之分類模型設計

dc.contributor林政宏zh_TW
dc.contributorLin, Cheng-Hungen_US
dc.contributor.author李政軒zh_TW
dc.contributor.authorLi, Zheng-Xuanen_US
dc.date.accessioned2025-12-09T08:31:21Z
dc.date.available2025-07-21
dc.date.issued2025
dc.description.abstract本研究旨在探討運用深度學習技術於心電圖(ECG)訊號分類的應用潛力,以協助提升心律異常的辨識能力與早期診斷準確性。研究中提出一種基於一維殘差網路(1D ResNet-18)之模型架構,並整合卷積區塊注意力模組(CBAM)與輔助分類器(Auxiliary Classifier),以強化模型對 ECG 特徵的表達與判別能力。此架構源自電腦視覺任務,經調整後應用於一維生理訊號的分類工作,展現良好的適應性。資料處理方面採用 ADASYN 技術處理類別不平衡問題,並輔以資料增強策略以提升模型穩定性與泛化能力。模型於 MIT-BIH 公開資料集中進行驗證,結果顯示其分類表現優於傳統方法,特別是在多類別訊號辨識上具備一定的穩定性與準確性。綜合研究結果,顯示本模型結合注意力機制、輔助分類設計與資料處理策略後,能有效強化 ECG 訊號分類模型之應用能力,未來有望作為智慧健康照護輔助診斷系統的技術參考。zh_TW
dc.description.abstractThis study investigates the use of deep learning in classifying electrocardiogram (ECG) signals to support arrhythmia detection and early diagnosis. A modified one-dimensional ResNet-18 model is introduced, integrating a Convolutional Block Attention Module (CBAM) and an auxiliary classifier to enhance feature representation and classification. These mechanisms, originally designed for computer vision tasks, are adapted to one-dimensional biomedical signals with promising results. To address class imbalance, the Adaptive Synthetic Sampling Approach (ADASYN) and data augmentation are applied, improving training stability and generalization. Using the MIT-BIH public dataset, the model demonstrates more consistent and accurate performance than conventional methods, particularly for underrepresented classes.The combination of attention mechanisms, auxiliary classification, and data balancing strategies establishes a robust ECG classification framework with potential applications in intelligent healthcare and clinical decision support.en_US
dc.description.sponsorshipAI跨域應用研究所zh_TW
dc.identifier612K0024C-47596
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/939b752d2b38715301cd3c7a276b8230/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/126200
dc.language中文
dc.subject心電圖分類zh_TW
dc.subject深度學習zh_TW
dc.subject類別不平衡zh_TW
dc.subjectCBAMzh_TW
dc.subject輔助分類器zh_TW
dc.subjectADASYNzh_TW
dc.subject資料增強zh_TW
dc.subjectResNet-18zh_TW
dc.subjectECG classificationen_US
dc.subjectdeep learningen_US
dc.subjectclass imbalanceen_US
dc.subjectCBAMen_US
dc.subjectauxiliary classifieren_US
dc.subjectADASYNen_US
dc.subjectdata augmentationen_US
dc.subjectResNet-18en_US
dc.title針對心電圖資料不平衡之分類模型設計zh_TW
dc.titleDesign of Classification Models for Imbalanced ECG Dataen_US
dc.type學術論文

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
202500047596-109934.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:
學術論文

Collections