運動與休閒學院
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/6
為配合我國社會變遷與體育發展及本校的轉型與發展,本學院於90年8月正式成立,並將原屬本校教育學院之體育學系(所)、運動競技學系、運動與休閒管理研究所調整成立運動與休閒學院,並於95學年度增設運動科學研究所:為提升本院競爭力於101學年度運動競技學系與運動科學研究所整併為「運動競技學系」,運動與休閒管理研究所與管理學院餐旅管理研究所整併為「運動休閒與餐旅管理研究所」。
News
Browse
4 results
Search Results
Item 大專七人制橄欖球運動員等長大腿中段拉力量表現與爆發力、速度及敏捷性的關係(2025) 吳承洋; Wu, Cheng-Yang目的:本研究旨在探討大專七人制橄欖球運動員等長大腿中段拉力量表現與爆發力、速度及敏捷性指標之間的關係。方法:本研究共招募 15 名大專七人制公開男生組橄欖球運動員。於同一測試期間,對運動員的肌力 (等長大腿中段拉)、爆發力 (蹲踞跳與擺手下蹲跳)、速度 (30 公尺衝刺) 及敏捷性 (Pro Agility、Cut 45°、5-0-5 及 T-test) 進行評估。根據力量—時間曲線,計算力量輸出與力量發展率的多種變量,以及跳躍高度。採用皮爾森積差相關係數分析各測量變項間的相關性。結果:等長大腿中段拉早期階段力量輸出 (30–100 毫秒) 與不同距離衝刺時間 (r = 0.525 至 0.720, p< .05) 顯著相關,後期階段力量輸出 (200–250 毫秒) 與擺手下蹲跳 (r = 0.518 至 0.523, p < .05) 顯著相關;等長大腿中段拉早期階段力量發展率 (0–30 及 0–50 毫秒) 與蹲踞跳力量發展率 (r = 0.550 至 0.653, p < .05)、擺手下蹲跳跳躍高度 (r = -0.575 至 -0.612, p < .05) 及不同距離衝刺時間 (r = 0.518 至 0.588, p < .05) 顯著相關。結論:等長大腿中段拉早期階段力量發展率與爆發力及速度指標密切相關,尤以早期階段力量輸出及力量發展率與 0–5、0–10、0–20 及 0–30 公尺衝刺時間之相關性最高,反映其能有效評估運動員於短時間內產生高強度施力之潛能。Item Item Applied Digital Sensor Technology in the Analysis of Different Intensity Movements and Sensor Placements(2014) 洋風; Füle János RóbertPurpose: The study analyzed and compared movement modes and cycles, intensity levels and digital sensor positions. The target was to identify characteristics of body movements that could pave the way to a healthy and sustainable life. Revelations of the study provide potential information for creating a new sporting equipment and experience. Method: The observation of locomotion was executed with three high-tech Inertial Measurement Units (IMUs) that were attached to participants at three locations (shoe, wrist and waist). IMU was the fusion of a gyroscope and an accelerometer. Walk, Run and Jump movements were compared at two intensities. Result: The statistical analysis revealed an applicable correlation between movements and intensities. The simple effects test resulted in non-significant interaction between movements and intensities. This interaction served as a tool for comparing movement patterns with each other. Body movements included a series of gait cycles. The gait cycle was determined by acceleration data. Peak to peak intervals caused by the heel strike of the left foot were compared. Angular velocity data of gait cycles were benchmarked among different intensities. As a result the Shoe IMU measured the angular velocity on the frontal Y axis and discovered a regular sequence of plantar and dorsiflexion. Conclusion: Angular velocity data from the frontal axis clearly identified the movement features of walking, running and jumping. The acceleration data on the sagittal plane could distinguish between low and high intensity movements. The acceleration and gyroscope data determined the intensities and the body movements. The locomotion of lower extremities was widely explored. Waist and wrist IMU data even enabled the estimation of energy expenditure. Analysis methods of sensor signals were subject to investigation. Application of multiple digital sensors provided a unique opportunity for new observations.Item 觀察走與跑不對稱性的現象以及疲勞對步態不對稱之影響(2017) 李尹鑫; Lee, Yin-Shin不對稱的步態在長時間的累積下不但會影響運動表現,甚至進一步造成慢性傷害,然而針對健康的一般人而言,步態不對稱的現象在長時間走跑的累積下其變化的情形,目前還未有一明確的指標來觀察。目的:實驗一:找出適當的運動學參數以及感測器擺放之部位來評估步態的不對稱現象;實驗二:釐清疲勞對步態不對稱之影響。方法:本研究分為兩個部份,實驗一:透過不對稱狀態的操弄 (單側加重、加長),利用實驗室現有的儀器來觀察人體在不同步態及不對稱狀態下的不對稱現象,並驗證慣性感測器在人體步態不對稱現象應用的可能性。實驗二:透過疲勞的介入,來觀察不對稱現象的變化。結果:實驗一:以感測器安裝部位而言,下肢與軀幹較能觀察出不對稱操弄的影響,以參數而言矢狀面上的加速度與角速度較佳,以分期而言為支撐期較能觀察到不對稱操弄的影響;實驗二:隨著動作時間的增加步態不對稱性會有下降的趨勢,下肢相對其它部位較能觀察出不對稱指標的變化。結論:慣性感測器可以用來量測步態的不對稱性,下肢是較適合的位置、支撐期矢狀面上的加速度與角速度是較適合的運動學參數;步態會隨著疲勞的累積而越對稱。