電機工程學系
Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/85
歷史沿革
本系成立宗旨在整合電子、電機、資訊、控制等多學門之工程技術,以培養跨領域具系統整合能力之電機電子科技人才為目標,同時配合產業界需求、支援國家重點科技發展,以「系統晶片」、「多媒體與通訊」、與「智慧型控制與機器人」等三大領域為核心發展方向,期望藉由學術創新引領產業發展,全力培養能直接投入電機電子產業之高級技術人才,厚植本國科技產業之競爭實力。
本系肇始於民國92年籌設之「應用電子科技研究所」,經一年籌劃,於民國93年8月正式成立,開始招收碩士班研究生,以培養具備理論、實務能力之高階電機電子科技人才為目標。民國96年8月「應用電子科技學系」成立,招收學士班學生,同時間,系所合一為「應用電子科技學系」。民國103年8月更名為「電機工程學系」,民國107年電機工程學系博士班成立,完備從大學部到博士班之學制規模,進一步擴展與深化本系的教學與研究能量。
News
Browse
19 results
Search Results
Item Minimum-phase criteria for sampled systems via symbolic approach(1996-12-13) C.-H. Wang; W.-Y. Wang; C.-C. HsuIn this paper, we propose a symbolic approach to determine the sampling-time range which guarantees minimum-phase behaviours for a sampled system with a zero-order hold. By using Maple, a symbolic manipulation package, the symbolic transfer function of the sampled system, which contains sampling time T as an independent variable, can be easily obtained. We then adopt the critical stability constraints to determine the sampling-time range which ensures that the sampled system has only stable zeros. In comparison with existing methods, the approach proposed in this paper has less restrictions on the continuous plant and is very easy to implement in any symbolic manipulation packages. Several examples are illustrated to show the effectiveness of this approachItem DSP-based fuzzy neural networks and its application in speech recognition(1999-10-15) S.-C. Chen; C.-C. Hsu; W.-Y. WangA fuzzy-neural network needs to be trained through a learning process, so that suitable membership functions and weightings can be obtained. However, most neural networks are only simulated by computer software, which are not practical for real applications. It is therefore our objective to design an integrated circuit system based on a DSP processor with powerful arithmetical capabilities and fast data processing, and relevant peripheral devices to implement the fuzzy neural network. In terms of implementation cost and feasibility for practical applications, this DSP-based fuzzy neural network will be more practical and usable. Finally, a prospective application of the DSP processor-based fuzzy neural network to recognize speech from a non-designated person is proposedItem Discrete modeling of continuous interval using high-order integrators(1999-06-04) C.-C. Hsu; W.-Y. WangA higher-order integrator approach is proposed to obtain an approximate discrete-time transfer function for uncertain continuous systems having interval uncertainties. Thanks to simple algebraic operations of this approach, the resulting discrete model is a rational function of the uncertain parameters. The problem of non-linearly coupled coefficients of exponential nature in the exact discrete-time transfer function is therefore circumvented. Furthermore, interval structure of the uncertain continuous-time system is preserved in the resulting discrete model by using this approach. Formulas to obtain the lower and upper bounds for the discrete interval system are derived, so that existing robust results in the discrete-time domain can be easily applied to the discretized system. Digital simulation and design for the continuous-time interval plant can then be performed based on the obtained discrete-time interval modelItem A GA-based indirect adaptive fuzzy-neural controller for uncertain nonlinear systems(2002-12-06) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. LiIn this paper, a novel approach to adjust both the control points of B-spline membership functions (BMFs) and the weightings of fuzzy-neural networks using a reduced-form genetic algorithm (RGA) is proposed. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the RGA. Moreover, we propose an application of the RGA in designing an RGA-based indirect adaptive fuzzy-neural controller (RIAFC) for uncertain nonlinear dynamical systems. The free parameters of the indirect adaptive fuzzy-neural controller can successfully be tuned on-line via the RGA approach. A supervisory controller is incorporated into the RIAFC to stabilize the closed-loop nonlinear system. An example of a nonlinear system controlled by RIAFC are demonstrated to show the effectiveness of the proposed method.Item A composite controller for unknown nonlinear dynamical systems using robust adaptive fuzzy-neural control schemes(2000-09-27) W.-Y. Wang; C.-C. Hsu; Y.-G. LeuA robust adaptive fuzzy-neural control scheme for nonlinear dynamical systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbance and modeling errors. A composite update law, which has a generalized form combining the projection algorithm modification and the switching-σ adaptive law, is used to tune the adjustable parameters for preventing parameter drift and confining states of the system into the specified regions. Moreover, a fuzzy variable structure control method is incorporated into the control law so that the derived controller is robust with respect to unmodeled dynamics, disturbances and modeling errors. Compared with previous control schemes for nonlinear systems, the magnitude of the control input by using the proposed approach is much smaller, which is a significant advantage in designing controllers for practical applications. To demonstrate the effectiveness and applicability of the proposed method, several examples are illustrated in the paperItem Discrete-Time Model Reduction of Sampled Systems Using an Enhanced Multiresolutional Dynamic Genetic Algorithm(2001-10-10) C.-C. Hsu; K.-M. Tse; W.-Y. WangA framework to automatically generate a reduced-order discrete-time model for the sampled system of a continuous plant preceded by a zero-order hold (ZOH) using an enhanced multi-resolution dynamic genetic algorithm (EMDGA) is proposed in this paper. Chromosomes consisting of the denominator and the numerator parameters of the reduced-order model are coded as a vector with floating-point-type components and searched by the genetic algorithm. Therefore, a stable optimal reduced-order model satisfying the error range specified can be evolutionarily obtained. Because of the use of the multi-resolution dynamic adaptation algorithm and the genetic operators, the convergence rate of the evolution process to search for an optimal reduced-order model can be expedited. Another advantage of this approach is that the reduced discrete-time model evolves based on samples taken directly from the continuous plant, instead of the exact discrete-time model, so that computation time is savedItem Genetic algorithms-derived digital integrators and their applications in discretization of continuous systems(2002-01-01) C.-C. Hsu; W.-Y. Wang; C.-Y. YuA set of enhanced digital integrators (EDI) with improved accuracy via genetic algorithms are proposed in this paper. By specifying a desired power for the integrator to be sought and the interval for comparison, chromosomes consisting of parameters of the enhanced digital integrator are then searched by the genetic algorithm based on root mean squared (RMS) error between the original integrator and candidates of the enhanced digital integrator. Thus, all the best parameters of an optimal enhanced digital integrator can be evolutionarily obtained. To demonstrate the effectiveness of the proposed approach, the derived enhanced digital integrators are used to obtain the discrete approximation for continuous systems.Item Fuzzy-neural function approximation using a vector evaluation genetic algorithm(2003-01-01) W.-Y. Wang; C.-C. Hsu; C.-W. Tao; Y.-H. LiItem GA-based learning of BMF fuzzy-neural network(2002-05-17) W.-Y. Wang; T.-T. Lee; C.-C. Hsu; Y.-H. LiAn approach to adjust both control points of B-spline membership functions (BMFs) and weightings of fuzzy-neural networks using a simplified genetic algorithm (SGA) is proposed. The SGA is proposed by using a sequential-search-based crossover point (SSCP) method in which a better crossover point is determined and only the gene at the specified crossover point is crossed as a single point crossover operation. Chromosomes consisting of both the control points of BMFs and the weightings of fuzzy-neural networks are coded as an adjustable vector with real number components and searched by the SGA. Because of the use of the SGA, faster convergence of the evolution process to search for an optimal fuzzy-neural network can be achieved. Nonlinear functions approximated by using the fuzzy-neural networks via the SGA are demonstrated to illustrate the applicability of the proposed methodItem A method of distance measurement by digital camera(2006-11-11) T.-H. Wang; C.-C. Hsu; C.-P. Tsai; M.-C. Lu; W.-Y. Wang; C.-C. Chen