化學系

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/57

國立臺灣師範大學化學系座落於公館校區理學院大樓。本系成立於民國五十一年,最初僅設大學部。之後於民國六十三年、七十八年陸續成立化學研究所碩士班和博士班。本系教育目標旨在培養化學專業人才與中等學校自然及化學專業師資,授課著重理論及應用性。本系所現有師資為專任教授25人,另外尚有與中央研究院合聘教授3位,在分析、有機、無機及物理化學四個學門的基礎上發展跨領域之教學研究合作計畫。此外,本系另有助教13位,職技員工1位,協助處理一般學生實驗及行政事務。學生方面,大學部現實際共322人,碩士班現實際就學研究生共174人,博士班現實際就學共55人。

本系一向秉持著教學與研究並重,近年來為配合許多研究計畫的需求,研究設備亦不斷的更新。本系所的研究計畫大部分來自國科會的經費補助。此外,本系提供研究生獎助學金,研究生可支領助教獎學金(TA)、研究獎學金(RA)和部分的個別教授所提供的博士班學生獎學金(fellowships)。成績優良的大學部學生也可以申請獎學金。

本校圖書館藏書豐富,除了本部圖書館外,分部理學院圖書館西文藏書現有13萬餘冊,西文期刊合訂本有911餘種期刊,將近約3萬冊。此外,西文現期期刊約450種,涵蓋化學、生化、生物科技、材料及其他科學類等領域。目前本系各研究室連接校園網路,將館藏查詢、圖書流通、期刊目錄轉載等功能,納入圖書館資訊系統中,並提供多種光碟資料庫之檢索及線上資料庫如Science Citation Index,Chemical Citation Index,Chemical Abstracts,Beilstein,MDL資料庫與STICNET全國科技資訊網路之查詢。

News

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    調節氮化硼材料活性以增強尿素氧化反應的選擇性和反應性—DFT 研究
    (2025) 郭芸安; Kuo, Yun-An
    本研究執行於微觀層次上分析氮化硼 (BN) 材料在尿素氧化反應中的吸附行為,並以富含缺陷與金屬摻雜的組織性 BN 線型與粒子型材料為研究對象。我們選用具備較高工程適用性的密度泛函理論 (DFT) 進行系統性先驗分析,並分別估算B12N12、B24N24、平面 h-BN、N 缺陷 h-BN 及鎳摻雜系統的結構穩定性、電子結構、吸附能與反應自由能變化。研究結果顯示,相較於 B12N12 與 B24N24 平面型的h-BN基材經N缺陷修飾後能顯著降低反應步驟的自由能變化,並提升電子傳輸能力與中間體的穩定吸附能力,是提升UOR能效的關鍵修飾策略。尿素分子在此系統中作為反應前驅步驟的關鍵吸附物,其吸附構型與結構合理性對後續反應的自由能具顯著影響。此外,我們亦考察金屬Ni在N缺陷中摻雜的可能性,並分析其對吸附能與UOR反應的正負面影響。儘管Ni可提供穩定且對稱的吸附配位結構,然而其強鍵結特性可能限制中間體的結構重組與質子轉移,使反應電位決定步驟之能障上升,降低整體反應效能。與先前文獻所述Ni-O-Ni結構的選擇性缺陷相符,說明金屬摻雜未必一定能促進催化反應。透過N缺陷工程修飾之平面h-BN在結構可調性、電子活化與反應動力學上皆展現卓越潛力。其具備原料豐富、製程簡易與環保應用潛力,有望應用於未來綠色能源轉換與尿素污染治理,提供新穎且可行之材料設計路徑。
  • Item
    利用理論計算探討電催化還原二氧化碳的反應機制
    (2012) 李子翊; Zi-Yi Li
    RuII(bpy)(trpy)(CO), bpy = 2,2'-Bipyridine, trpy = 2,2':6',2”-terpyridine, 這個錯合物是少數能夠將二氧化碳直接還原成甲醇的有機錯金屬錯合物,這個錯合物曾經被報導可以在通入-1.5V的電壓環境下,生成甲醇和碳碳鍵生成的產物,利用此催化劑還原二氧化碳的產物包括了CO、HCOOH、CH3OH、HC(O)H、H(O)CCOOH以及HOCH2COOH,而第一個推測這個催化反應的反應機制是Tanaka,但是這個催化反應的各種中間產物的詳細資訊,不管是在實驗或是理論計算中都還是不清楚的。 在目前的研究利用理論計算的方法來分析這個反應機制,包括利用還原電位,pKa以及自由能來更完善Tanaka所預測的反應機制,並探討其反應的可行性。 關鍵字: 二氧化碳,理論計算,電催化,反應機構
  • Item
    FeS2 Nanocrystal Ink as a Catalytic Electrode for Dye-Sensitized Solar Cells
    (Wiley-VCH Verlag, 2013-06-24) Y.-C. Wang; D.-Y. Wang; Y.-T. Jiang; H.-A. Chen; Chia-Chun Chen; K.-C. Ho; - H.-L. Chou; Chun-Wei Chen
    Calligraphic counter electrodes: An important photovoltaic application using FeS2 nanocrystal (NC) pyrite ink to fabricate a counter electrode as an alternative to Pt in dye-sensitized solar cells is demonstrated. FeS2 NC ink exhibits excellent electrochemical catalytic activity and remarkable electrochemical stability. ITO=indium-doped tin oxide.
  • Item
    Platinum-Decorated Ruthenium Nanoparticles for Enhanced Methanol Electrooxidation
    (Wiley-VCH Verlag, 2010-02-08) C.-H. Chen; L. S. Sarma; D. -Y. Wang; F.-J. Lai; C.-C. AI Andra; S.-H. Chang; D.-G. Liu; Chia-Chun Chen; J.-F. Lee; B.-J. Hwang
    A promising electrocatalyst based on the reduction of Pt2+ ions on the surface of hexagonally close-packed (hcp) Ru core nanoparticles has been prepared by a redox–transmetalation process. This simple synthetic process generates a Pt-on-Ru catalyst with a lower Pt content than commercially available Pt[BOND]Ru electrocatalysts and with a long-range ordered hcp structure, which can significantly reduce the Pt loading. X-Ray absorption spectroscopy of the Pt-on-Ru catalyst reveals pronounced electronic modifications when compared to the commercial Pt[BOND]Ru black catalyst. The Pt-on-Ru catalyst exhibits a higher mass-specific current than the Pt[BOND]Ru black catalyst in solution in 0.5 m H2SO4 with 10 vol. % CH3OH under the conditions of rotating disk experiments. Further optimization of this synthetic procedure may yield even more active electrocatalysts with a significant reduction in noble metal loadings.