科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 10 of 13
  • Item
    深度學習基於訓練數據之技術發展趨勢 : 以專利分析方法探討
    (2024) 雷政達; LEI, Zheng-Da
    隨著人工智慧的快速發展,深度學習之神經網絡技術以已成為現今全球技術發展的重點之一,並將其技術運用在各產業領域中。本研究旨在探討深度學習中不同神經網路的技術發展趨勢與應用領域,並透過專利檢索與分析方法來評估其發展趨勢和影響力。通過TIPO全球專利檢索系統資料庫中大量專利數據的收集和分析,探討神經網路技術的歷年專利件數、領先國家別、領先公司別、技術發展現況等,透過專利檢索與技術生命週期分析方法,可以深入了解深度學習技術的應用範圍和為未來發展動向,為未來的研究和產業應用提供價值。總而來說,本研究旨通過專利分析方法深入探討深度學習基於訓練數據之神經網路與其八項神經網絡技術包含循環神經網絡 (Recurrent neural network, RNN) 、卷積神經網絡 (Convolutional Neural Network, CNN) 、生成對抗網絡 (Generative Adversarial Network, GAN) 、時序視覺網絡 (Temporal Segment Networks, TSN) 、自動編碼器 (Autoencoder, AE) 、深度置信網絡 (Deep Belief Network, DBN) 、深度轉移網絡 (Deep Transformation Networks, DTN) 、深度資訊最大化網絡 (Deep InfoMax, DIM),為相關領域的研與應用提供一定程度的參考依據。
  • Item
    基於臉部及語音特徵之輕量化深度學習情感辨識系統
    (2024) 呂健維; Lu, Chien-Wei
    因應近年來高齡化導致老人照護人力缺乏,本研究提出了一種可被應用於陪伴型機器人(Zenbo Junior II)上的整合臉部表情和語音的情感識別輕量化模型。近年來對於人類的情感識別技術大多使用基於卷積神經網路(Convolutional Neural Network, CNN)的方式來實現,並得到了優秀的成果,然而,這些先進的技術都沒有考慮計算成本的問題,導致這些技術在計算能力有限的設備上無法運行(例如,陪伴型機器人)。因此,本研究將輕量化的GhostNet模型,應用於臉部情感識別的模型,並將輕量化的一維卷積神經網路(One Dimensional Convolutional Neural Network, 1D-CNN)作為語音情感識別模型,再利用幾何平均數的方式將兩個模態預測的結果整合。所提出的模型,在RAVDESS和CREMA-D兩個數據集上分別取得了97.56%及82.33%的準確率,在確保了高準確率的情況下,本研究將參數量壓縮到了0.92M,浮點運算次數減少至0.77G,比起目前已知的先進技術要少了數十倍。最後,將本研究的模型實際部署在Zenbo Junior II中,並透過模型與硬體的運算強度作比較,得知本研究的模型能夠更加順利的在該硬體中運行,且臉部及語音情感識別模型的推理時間分別只有1500毫秒及12毫秒。
  • Item
    用於陪伴型機器人之輕量化深度學習音樂情緒辨識模型
    (2024) 林彥榕; Lin, Yen-Jung
    為了應對現今社會高齡化,導致老人缺乏陪伴導致的孤獨問題,本研究提出用於陪伴型機器人Zenbo Junior II的音樂情緒辨識模型來解決老人孤獨導致的情緒問題。在音樂情緒辨識這個研究領域中,雖然也有很多人已經在進行這項研究,但是這些研究中沒有能用於Zenbo Junior II的輕量化架構。本研究提出的方法是使用一維卷機神經網路(1D-Convolutional Neural Network, 1D-CNN)替換掉常用的2D-CNN並且使用閘門循環單元(Gated Recurrent Unit, GRU)使模型能更好的考慮音頻特徵的連續性。在訓練完模型後儲存並應用於Zenbo Junior II上,先將另一研究的情緒對應成4種情緒後播放音樂調適情緒。本研究提出之模型在PMEmo數據集上Valence和Arousal分別為0.04和0.038與其他模型相比效能最好。並且參數量僅有0.721M浮點運算次數僅有9.303M,遠小於其他相比較之模型。運算強度最靠近Zenbo Junior II之最佳工作點,且模型辨識音樂所需推理時間僅需229毫秒,可以即時辨識出音樂的情緒。這些表明本研究成功提出一個輕量化且效能優異,並且可以在Zenbo Junior II上運行的模型。
  • Item
    基於Transformer物件關聯模型應用於籃球賽事分析
    (2024) 陳柏諺; Chen, Po-Yen
    在籃球賽事分析中,準確識別持球者和判斷得分時機對於確定得分者是關鍵挑戰。傳統的分析方法,比如物件重疊度和相對距離測量,往往在識別持球和進球時刻面臨較高的誤判風險。為了解決這一問題,我們對本團隊先前提出的Transformer-based Object Relationship Finder(ORF)架構的輸入特徵進行了改進,重點關注了幾個關鍵因素:與球密切相關的球員、球員的姿勢,以及不同的物件類型。這一策略顯著提高了架構在識別複雜動作和搶球情況下的準確度,使得持球者的識別準確率從原來的80.79%提升至86.18%,有效地展示了精準特徵選擇的重要性。此外,我們還利用Transformer-based Object Relationship Finder架構來識別進球時機,並結合最後接觸球的持球者信息,從而有效地判斷得分者,相較於傳統方法我們將得分者準確率從63.89%提高到了87.50%,這一成績突顯了Transformer-based Object Relationship Finder在籃球分析中的強大效能和廣泛應用前景。最後,我們開發了一款整合了這些技術的應用工具。這不僅讓教練和分析師能更全面地理解比賽情況,還為未來的籃球研究和技術開發提供了堅實的基礎。
  • Item
    基於深度學習之影視二級調色研究
    (2021) 黃志堅; Huang, Chih-Chien
    電影和電視的調色(Color Grading)任務既重要又極複雜。調色涉及美學和技術,需要訓練有素技術人員、耗費大量時間,在情節中提高視覺吸引力,藉改變意象引導觀眾視覺。在這過程中 ,色彩是影像不可或缺的敘述元素,它在觀賞者中扮演著關鍵重要的角色。色彩可突顯影像主體張力,引起人們關注。場景交替、色彩變化都由調光師擔負起重要任務,校正顏色維持藝術價值以取悅人眼,隱藏著色中的不連續性,微妙調整鏡頭。調色,更是一個相當不容易操縱領域。當作業時效性成為商業製片重要考量時,使用自動方式解決是一個受歡迎且省錢選項,所以迅速取得值得參考的深度調色影像,有其高度價值。本研究結合調光與人工智慧跨領域應用,設計以食物顏色、味覺中酸、甜、苦、辣的影像主體二級自動色彩轉換方法。此為食物味覺色調及有關凸顯主體影像二級自動色彩轉換創新嘗試,實際轉換快速且便利。轉換結果依客觀評量之峰值信噪比(PSNR)平均數據為31.29。結構相似性指標(SSIM)平均數據為0.956。從這些數字足以證明此二級自動色彩轉換應用之可實踐性。依主觀評量之(深度調色之判斷酸甜苦辣正確率)平均為61.76%,表示超過六成受測者可以精準分辨深度調色四種味覺。但在接近四項味覺目標色選擇深度調色平均為25%,只有四分之一的專業及非專業人士認為深度調色比人工調色好。綜合以上數據。充分驗證此方法的可行性及實用性。深度調色確實有效逼近人工調色,可以有效節省後期製作時間與費用。雖然深度調色仍有進步空間,但對於未具調光技能與設備的一般使用者而言,具有方便輔助性。
  • Item
    基於色彩味覺之自動化深度調色研究
    (2022) 楊怡群; Yang, Yi- Chun
    色彩是影像敘事的關鍵要素之一,影視製作的色彩設計在前置階段就已開始;美術指導針對劇情調性做場景的色彩設計,妝髮會做測試,戲服會配合場景及劇情作色彩搭配,攝影指導決定畫面構圖、燈光呈現的方式等,這些都會對整部影視作品的色彩及質感產生影響。殺青後將設計好的色彩交由調光師將所有的色彩及質感設計做最完美的呈現,憑著豐富經驗所累積的美學藝術營造特定情緒氛圍,引導觀眾走入劇情裡。因此,調光師在影視的後期製作裡扮演著極其重要的角色。近年來,隨著OTT(over-the-top)與自媒體的盛行,各播映平台對於影像作品的需求量大增,但後期調色耗時、費工且費用昂貴,因此,若能設計自動化的調色方法必定能解決這些問題。本研究將學術與實務結合,透過深度學習(Deep Learning)的方式,設計一套自動化的一級調色(Primary Color Grading)方法,以味覺中的酸、甜、苦、辣色調風格作為深度學習的目標。在客觀的效果評估方面,峰值信噪比(Peak Signal to Noise Ratio, PSNR)的數值皆在20以上,另外,在結構相似性指標(Structural Similarity Index Measure, SSIM)方面,數值都接近1,足證用此方法能產製出優良的色調影像品質。在主觀評估上,受測者觀看自動化深度調色(Deep Color Grading)的動態影像後,因色彩共感覺(Chromes Thesia)的作用而有高達82%的色彩味覺識別率,皆能指出該色調所要傳達的味道,這意味著此方法所產製出的色調風格受大眾認同。此外,相較於人工調色的動態影像,雖然總體分數深度調色只有32.81%的認同度,但其中苦味深度調色的認同度卻比人工調色高出26%,證明此方法有很大的進步空間與潛能。綜觀之,本研究所設計的自動化深度調色方法具有相當大的可行性,雖然目前無法直接應用於調色作業,但可以為非色彩專業者產出參考圖像。
  • Item
    花語之色彩意象應用於色彩建議與分析
    (2022) 林昭伶; Lin, Chao-Ling
    本研究所側重分析的焦點以日本學者小林重順建立色彩意象座標(Color Image Scale)與色彩意象詞彙資料庫(Color Image Word Database),讓情緒與色彩或色彩組合標準化、數值化,以奠定學理討論基礎,其利用語意差異法度量色彩及意象的關聯,與日本色彩與設計研究所(Nippon Color and Design Research Institute, NCD)合作開發色彩意象座標。透過自然語言處理(Natural Language Processing, NLP)技術將一般口語化的表達轉換至專業的一個或多個設計參數的辨識,用於人工智慧(Artificial Intelligence, AI)深度學習(Deep Learning)訓練出符合大數據內容呈現趨勢優化的色彩建議的方法,提出具體建議。透過設計3組實驗「多意象色彩調和演算法」、「色彩意象抽取演算法」、「花卉圖片重點色彩擷取」,進行提取3色色彩組合當作已知色,實作於「色彩建議演算法」輸出建議色,利用網路問卷調查分析滿意度,結果顯示色彩建議後的5色色彩組合的滿意度平均數都比4色色彩組合高。本研究的主題花語之色彩意象應用於色彩建議後的4色、5色色彩組合的滿意度平均數均達3分以上具有正面的評價。另外,本研究觀察審美度方程式M=O/C,花卉圖片重點色彩應用於色彩建議後的4色、5色色彩組合,都有100%符合M>0.5,發現應是花的顏色色相大多較為相近,產生對應到的數值不會差太大的現象,在曼賽爾色彩系統中如果O與C的落差不夠大,計算得到的數據就不會差太大,進而發現當色彩色相都較為相近時只採用審美度來進行評量色彩調和度是不夠的。 花語被加以利用於色彩意象的表現,輔助設計半自動化色彩建議方法,產生具有代表性或獨特性的色票,未來得以應用於印刷與設計產業中,解決一般非專業人員色彩運用能力不足的困境。COVID-19疫情觸動數位轉型契機,迫切需要大量的資訊傳遞、搜尋與雲端儲存及大數據的使用。科技的進步讓科技推動模式逐漸由技術轉為需求導向(陳聖智,2021),色彩建議方法的效能與創新應用的可行性,導入人工智慧概念,無須透過漫長歲月經驗累積養成,輔助更多有設計需求但能力不足的人,即時性設計因應少量多樣、個人化、個性化的趨勢設計潮流,亦是本研究主要課題以供後續相關研究與應用之參考。
  • Item
    運用波前修正於數位全像造影及其深度學習致動粒子偵測之研究
    (2020) 高揚傑; Gao, Yang-Jie
    本論文主要探討利用數位全像式的資料及波前修正技術於深度學習以影像辨識上的優勢,以達到三維粒子偵測之目的。在數位全像造影中,本文探討波前像差對於樣品資訊的影響及修正方法,以得到正確的物體資訊,同時運用數位全像資料擴增方法,來提升數據集的多樣性。而運用上述方法即可透過數位全像術取得粒子的波前繞射資訊,再運用深度學習於物件偵測的技術,藉由調整模型架構及參數,來使樣品偵測能力及辨識能力達到最大準確度,來進行三維空間位置定位及尺寸分類,以利未來透過數位全像顯微造影系統擷取其他樣品的光場資訊進行定位,增加未來應用的潛力。