科技與工程學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/5

沿革

科技與工程學院(原名為科技學院)於87學年度成立,其目標除致力於科技與工程教育師資培育外,亦積極培育與科技產業有關之工程及管理專業人才。學院成立之初在原有之工業教育學系、工業科技教育學系、圖文傳播學系等三系下,自91學年度增設「機電科技研究所」,該所於93學年度起設立學士班並更名為「機電科技學系」。本學院於93學年度亦增設「應用電子科技研究所」,並於96學年度合併工教系電機電子組成立「應用電子科技學系」。此外,「工業科技教育學系」於98學年度更名為「科技應用與人力資源發展學系」朝向培育科技產業之人力資源專才。之後,本院為配合本校轉型之規劃,增加學生於科技與工程產業職場的競爭,本院之「機電科技學系」與「應用電子科技學系」逐漸朝工程技術發展,兩系並於103學年度起分別更名為「機電工程學系」及「電機工程學系」。同年,本學院名稱亦由原「科技學院」更名為「科技與工程學院」。至此,本院發展之重點涵蓋教育(技職教育/科技教育/工程教育)、科技及工程等三大領域,並定位為以技術為本位之應用型學院。

107學年度,為配合本校轉型規劃,「光電科技研究所」由原隸屬於理學院改為隸屬本(科技與工程)學院,另增設2學程,分別為「車輛與能源工程學士學位學程」及「光電工程學士學位學程」。

News

Browse

Search Results

Now showing 1 - 9 of 9
  • Item
    基於Faster R-CNN演算法的行人偵測應用研究與分析
    (2025) 何逸凡; He, Yi-Fan
    本論文的研究動機在於物件偵測與追蹤的運作探討與原理分析,研究目的主要在於行人的影像偵測與追蹤上,了解現有的物件分類的演算法及數據庫,同時改良出新演算法以達到的較高的物件匹配度。本文中所改良的物件辨識演算法主要以Faster R-CNN為主,對行人影像目標進行物件追蹤,過程中也會與現有的演算法做分析比較取得研究的可行性與可靠度。
  • Item
    深度學習基於訓練數據之技術發展趨勢 : 以專利分析方法探討
    (2024) 雷政達; LEI, Zheng-Da
    隨著人工智慧的快速發展,深度學習之神經網絡技術以已成為現今全球技術發展的重點之一,並將其技術運用在各產業領域中。本研究旨在探討深度學習中不同神經網路的技術發展趨勢與應用領域,並透過專利檢索與分析方法來評估其發展趨勢和影響力。通過TIPO全球專利檢索系統資料庫中大量專利數據的收集和分析,探討神經網路技術的歷年專利件數、領先國家別、領先公司別、技術發展現況等,透過專利檢索與技術生命週期分析方法,可以深入了解深度學習技術的應用範圍和為未來發展動向,為未來的研究和產業應用提供價值。總而來說,本研究旨通過專利分析方法深入探討深度學習基於訓練數據之神經網路與其八項神經網絡技術包含循環神經網絡 (Recurrent neural network, RNN) 、卷積神經網絡 (Convolutional Neural Network, CNN) 、生成對抗網絡 (Generative Adversarial Network, GAN) 、時序視覺網絡 (Temporal Segment Networks, TSN) 、自動編碼器 (Autoencoder, AE) 、深度置信網絡 (Deep Belief Network, DBN) 、深度轉移網絡 (Deep Transformation Networks, DTN) 、深度資訊最大化網絡 (Deep InfoMax, DIM),為相關領域的研與應用提供一定程度的參考依據。
  • Item
    基於圖像串接和深度學習的改良生咖啡豆分類方法
    (2024) 温鑫; Wen, Xin
    為了解決生咖啡豆在影像辨識上的分類困難並提升精確度,這篇論文提出了一種通過串接不同的影像增強技術來融合不同的特徵提取演算法,以提高對生咖啡豆的辨識準確率。為了從原始影像中獲得各種關鍵特徵,我們選用了自適應閾值、位元平面分割、黑帽運算、Canny邊緣偵測、灰階、直方圖等化、Laplacian濾波、頂帽運算與非銳化濾鏡九種常見的影像增強方法。我們提出先在原本九種影像增強算法中挑選出與基準真相相關性較高的方法,並且僅將原始影像的RGB影像平面替換成相關性較高的影像處理方法,藉著多種特徵提升模型辨識度。在這項研究中,我們使用MobileViT進行實驗,最後選擇相關性較高的處理方式作為特徵融合的素材,經過影像串接產生的影像資料集作為新的輸入重新訓練。我們將不進行任何影像增強的分類方法視為基準。在二分法中,位元平面分割、直方圖等化和非銳化濾鏡的組合達到了96.9%的準確率,相對於原始方法提高了約5.5%。如果使用去除背景的相同資料集,相同的組合可以達到了97.0%的準確率;當我們選擇三分法進行實驗時,同樣都是由位元平面分割、直方圖等化和非銳化濾鏡的組合,分別達到了96.8%以及97.4%的準確率,較原始方法提升6.7%與4.9%。最後我們使用MobileNetV3驗證研究結果,在二分法的情況下,相同的影像增強組合分別在未去除背景與去除背景的影像可以獲得最高的99.12%與99.21%的準確率,相較原始方法有0.39%與0.44%的提升;如果以三分法再次進行實驗,與原始方法比較,大約分別有0.92%以及0.79%的提升,取得了98.73%與99.25%的準確率。
  • Item
    基於臉部及語音特徵之輕量化深度學習情感辨識系統
    (2024) 呂健維; Lu, Chien-Wei
    因應近年來高齡化導致老人照護人力缺乏,本研究提出了一種可被應用於陪伴型機器人(Zenbo Junior II)上的整合臉部表情和語音的情感識別輕量化模型。近年來對於人類的情感識別技術大多使用基於卷積神經網路(Convolutional Neural Network, CNN)的方式來實現,並得到了優秀的成果,然而,這些先進的技術都沒有考慮計算成本的問題,導致這些技術在計算能力有限的設備上無法運行(例如,陪伴型機器人)。因此,本研究將輕量化的GhostNet模型,應用於臉部情感識別的模型,並將輕量化的一維卷積神經網路(One Dimensional Convolutional Neural Network, 1D-CNN)作為語音情感識別模型,再利用幾何平均數的方式將兩個模態預測的結果整合。所提出的模型,在RAVDESS和CREMA-D兩個數據集上分別取得了97.56%及82.33%的準確率,在確保了高準確率的情況下,本研究將參數量壓縮到了0.92M,浮點運算次數減少至0.77G,比起目前已知的先進技術要少了數十倍。最後,將本研究的模型實際部署在Zenbo Junior II中,並透過模型與硬體的運算強度作比較,得知本研究的模型能夠更加順利的在該硬體中運行,且臉部及語音情感識別模型的推理時間分別只有1500毫秒及12毫秒。
  • Item
    用於陪伴型機器人之輕量化深度學習音樂情緒辨識模型
    (2024) 林彥榕; Lin, Yen-Jung
    為了應對現今社會高齡化,導致老人缺乏陪伴導致的孤獨問題,本研究提出用於陪伴型機器人Zenbo Junior II的音樂情緒辨識模型來解決老人孤獨導致的情緒問題。在音樂情緒辨識這個研究領域中,雖然也有很多人已經在進行這項研究,但是這些研究中沒有能用於Zenbo Junior II的輕量化架構。本研究提出的方法是使用一維卷機神經網路(1D-Convolutional Neural Network, 1D-CNN)替換掉常用的2D-CNN並且使用閘門循環單元(Gated Recurrent Unit, GRU)使模型能更好的考慮音頻特徵的連續性。在訓練完模型後儲存並應用於Zenbo Junior II上,先將另一研究的情緒對應成4種情緒後播放音樂調適情緒。本研究提出之模型在PMEmo數據集上Valence和Arousal分別為0.04和0.038與其他模型相比效能最好。並且參數量僅有0.721M浮點運算次數僅有9.303M,遠小於其他相比較之模型。運算強度最靠近Zenbo Junior II之最佳工作點,且模型辨識音樂所需推理時間僅需229毫秒,可以即時辨識出音樂的情緒。這些表明本研究成功提出一個輕量化且效能優異,並且可以在Zenbo Junior II上運行的模型。
  • Item
    改良深度學習的人形機器人於高動態雜訊之視覺定位
    (2024) 隋嘉銘; Sue, Chia-Ming
    一些基於相機或其他技術的視覺 SLAM 方法已經被提出。 光學感測器來導航和了解其環境。例如, ORB-SLAM 是一個完 整的 SLAM 系統,包括視覺里程計、追蹤和定位 ORB-SLAM 僅 依賴使用單目視攝影機進行特徵偵測,但在與人形機器人一起工 作時,會出現嚴重的問題晃動模糊問題。深度學習已被證明對於穩健且即時的單眼影像重新定位是有 效的。視覺定位的深度學習是基於卷積神經網路來學習 6-DoF 姿 勢。 它對於複雜的照明和運動條件更加穩健。然而,深度學習的 問題是視覺定位方法的一個缺點是它們需要大量的資料集和對這 些資料集的準確標記。本文也提出了標記視覺定位資料和自動辨識的方法用於訓練 視覺定位的資料集。我們的標籤為基於 2D 平面( x 軸、 y 軸、 方向)的姿勢。最後,就結果而言可見,深度學習方法確實可以 解決運動模糊的問題。比較與我們以往的系統相比,視覺定位方 法減少了最大誤差率 31.73% ,平均錯誤率減少了 55.18% 。
  • Item
    基於Transformer物件關聯模型應用於籃球賽事分析
    (2024) 陳柏諺; Chen, Po-Yen
    在籃球賽事分析中,準確識別持球者和判斷得分時機對於確定得分者是關鍵挑戰。傳統的分析方法,比如物件重疊度和相對距離測量,往往在識別持球和進球時刻面臨較高的誤判風險。為了解決這一問題,我們對本團隊先前提出的Transformer-based Object Relationship Finder(ORF)架構的輸入特徵進行了改進,重點關注了幾個關鍵因素:與球密切相關的球員、球員的姿勢,以及不同的物件類型。這一策略顯著提高了架構在識別複雜動作和搶球情況下的準確度,使得持球者的識別準確率從原來的80.79%提升至86.18%,有效地展示了精準特徵選擇的重要性。此外,我們還利用Transformer-based Object Relationship Finder架構來識別進球時機,並結合最後接觸球的持球者信息,從而有效地判斷得分者,相較於傳統方法我們將得分者準確率從63.89%提高到了87.50%,這一成績突顯了Transformer-based Object Relationship Finder在籃球分析中的強大效能和廣泛應用前景。最後,我們開發了一款整合了這些技術的應用工具。這不僅讓教練和分析師能更全面地理解比賽情況,還為未來的籃球研究和技術開發提供了堅實的基礎。