跨域科技產業創新研究學院

Permanent URI for this communityhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/124120

為因應「跨域科技產業創新」的需求,臺師大成立「跨域科技產業創新研究學院」,以學院為統整單位,透過學院整合不同領域師資及教學資源,同時結合市場的趨勢與企業前瞻研發需求,讓學院成為跨領域創新的推動引擎,形成學企合一,使學生能夠在跨領域學習及前瞻技術商業化的框架下,達到即學即用的目標,同時將學研成果帶進企業。 為呼應政府提出產業創新為重點策略方向,研究學院下設置 「AI跨域應用研究所」及「綠能科技與永續治理研究所」二大研究所。其中「AI跨域應用」為教育部產業創新研究學院計畫擬定的五大重點領域中「人工智慧」及「智慧製造」項目;「綠能科技與永續治理」橫跨五大重點領域中「循環經濟」項目。 透過這二個研究所的設置,將建立學術界與產業界間系統性協力機制,緊密連結學校與產業,共同投入前瞻應用研究並培育人才,使臺師大成為產業創新的合作夥伴。

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    針對長尾視覺辨識之自適應目標增強策略
    (2025) 范哲瑋; Fan, Che-Wei
    監督學習中的長尾問題是由於現實世界資料集中固有的不平衡性所引起的,其中少數幾個類別或樣本佔據了資料分佈的大部分,而大多數類別(「尾部」)則擁有顯著較少的樣本。這個問題對傳統的監督學習算法構成了挑戰,因為這些算法通常優先優化在頻繁(頭部)類別上的表現,而犧牲了在罕見(尾部)類別上的表現。在近期提出的方法中,資料增強技術如 MixUp 和 CutMix 被廣泛應用於解決長尾問題。MixUp 通過對兩張影像進行插值,而 CutMix 則將一張影像的剪切區域貼到另一張影像上,從而合成更多樣化的訓練樣本。然而,據我們所知,目前尚無研究明確探討應該配對或結合哪些影像來達到最佳效果。為了解決這個挑戰,本研究提出了一種名為特徵感知分數選擇 (Feature-Aware Score-Based Selection, FASS) 的新策略。在應用 MixUp 或 CutMix 之前,FASS 根據影像的特徵表現動態選擇並配對影像。與傳統增強方法主要著重於增強少數類別樣本不同,FASS 動態識別與特徵相關的目標類別,以提升模型區分相似特徵的能力。當 FASS 與其他先進方法結合時,在 CIFAR-100 和 ImageNet-LT 等基準資料集上,FASS 展現出卓越的性能,達到了最新的最佳表現。