學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73901
Browse
4 results
Search Results
Item 對於高中生複數概念學習的主要錯誤類型、產生的原因及其補救教學研究(2009) 林晁熙本研究目的在探討探討高中生在學習複數表徵(代數式、圖形、文字敘述)、複數四則運算學習上錯誤類型,探討錯誤類型產生的原因,並針對這些錯誤類型設計教材進行補救教學,幫助學生改正這些錯誤。 本研究採二階段評量方式,用來診斷高中生在學習複數表徵與複數四則運算學習上的迷思概念,並整理歸納成為錯誤類型,再針對所得的資料進行分析錯誤類型的成因,設計補救教學教材,並進行補救教學活動。 根據本研究,高中生在學習複數的意義與四則運算有8種主要錯誤類型,歸納為以下四大類:一、不了解複數的定義;二、不了解複數幾何表徵與絕對值的運算;三、將舊經驗過度推廣;四、先備知識的不足。 就本研究的補救教學成效而言,學生經過複數的補救教學活動之後,其後測各題答題正確率皆皆比前測答題正確率高,且經統計軟體驗證,每一題都有明顯的改善。就錯誤類型的變化情形來看,學生在經過複數補救教學活動之後,每個主要錯誤類型後測的答題正確率皆比前測答題正確率高,並且有多數類型的答題正確率都達到90%以上(含90%)。可見本研究的補救教學活動能有效地改善學生在複數單元所犯的錯誤類型。 而就此補救教學的保留情形而言,所有題目在延後測的答題正確率皆高於60%,顯示各題的保留狀態都不錯。就數學概念的變化情形來看,運算的方式只要正確,並於補救教學過程中使學生熟練,其保留效果都不錯;而概念部份有時與舊經驗做連結,有時與舊經驗產生認知衝突,以達到教學成效,這是本補救教學所強調的部份,雖然學生於後測的兩個月後才實施延後測,但就保留效果來說還算不錯。 最後根據本研究的結果加以討論,並作檢討與提出建議,希望能給第一線的教師、教科書編寫者、以及未來相關研究作為參考。Item 國二學生在二次方根的意義與四則運算上的主要錯誤類型及其補救教學之研究(2009) 林鴻成摘 要 本研究目的在探討國中生在學過「二次方根的概念及運算」的課程之後,會出現哪些錯誤類型。本研究採用二階段評量來診斷國二學生對於二次方根的意義與四則運算的迷思概念,並整理歸納成為錯誤類型,再針對所得的資料進行分析錯誤類型的成因,設計補救教學教材,並進行補救教學活動,來改正學生對於二次方根所存在的迷思概念。 根據本研究,國二學生在二次方根的主要錯誤類型可分成以下四大類,共11種:(ㄧ)對於單一概念或定義的不了解:(1)不了解無理數是一個明確且固定的數值;(2)不了解同類方根的定義。(二)無法將不同的概念、定義或表徵方式作正確的連結或區分:(3)認為0沒有平方根;(4)對於平方根的意義和 所代表的意義之間產生混淆;(5)認為每一個數都有平方根;(6)不了解數線上有無理數點的存在;(7)將分母有理化和同類方根的合併搞混。(三)計算程序上的錯誤:(8)方根減法運算時,直接將同類方根的部分消掉;(9)忽略分母的整體性。(四)將先前的經驗作過度的類推:(10)將根號和平方直接消掉;(11)只用一個例子成立就來推斷性質的成立。而造成這些錯誤類型的原因有:對於二次方根的定義不清楚;將以前解題的經驗作過度的類推;無法將無理數和數線作正確的連結;不清楚同類方根的定義。 就補救教學的成效而言,在經過補救教學活動之後,後測各題的答題正確率皆高於前測,而在13題的試題中,就有8題的答題正確率提高30%以上(含30%)。參與補救教學的學生,其後測的答題正確率皆高於前測。就錯誤類型的變化情形來看,有10個類型的答題正確率皆高於前測。可見二次方根的補救教學活動對於改善學生在二次方根常犯的錯誤有顯著的成效。 分析後測和延後測的結果來看,除了第1題之外,其餘的12題,學生在後測與延後測的答題情形差異不大;以錯誤類型來看,學生在延後測中其餘的錯誤類型犯錯的人數並沒有大幅的改變,也意味著補救教學的成效經過了一個月左右,學生對於二次方根補救教學的學習有不錯的保留效果。 關鍵字:二次方根、二階段評量、錯誤類型、補救教學。Item 高二學生在向量概念學習上的主要錯誤類型及其補救教學之研究(2009) 李永貞; Li,Yung Chen本研究分成兩部分。第一部分為發展二階段診斷評量,探討高二學生在學習向量概念與基本運算上有哪些主要錯誤類型及成因,第二部為探討高二暑期重修班71人中發生這些主要錯誤類型的學生,經過補救教學後,從各題答題正確率的變化情形、發生錯誤類型犯錯人數改變情形、補救教學保留情形,探討補教教學幫助學生改善錯誤概念的成效。 根據本研究結果發現:高二學生在向量概念與基本運算上的主要錯誤類型有以下九種: 1.認為向量記號可以表示向量的大小。2.把方向相反的向量當成負值。3.把向量大小記號當成絕對值記號。4.在三角形法兩向量相加時,把和向量的起點與終點位置寫相反。5.在平行四邊形法兩向量相加時,使用錯誤的對角線表示它的和向量。6.認為向量記號相加或相減就是長度相加或相減。7.認為向量的內積運算符號就是數的乘法運算符號。8.不了解向量夾角的定義。9.認為兩組向量內積中,可以利用「向量大小」或「兩向量夾角」其中一個條件的大小來判斷內積大小,或當向量大小和向量夾角都不相同時,則無法比較內積的大小。 這些主要錯誤類型成因可分成四大類:1.受舊經驗的影響。2.因為新概念與新表徵無法作正確聯結的錯誤。3.受教師教學的影響。 經過補救教學後,每位學生在後測的答題正確率均明顯提高,各錯誤類型犯錯人數有均有明顯減少,顯示補救教學對於改善學生主要錯誤類型有明顯的成效。比較後測與延後測結果,除了錯誤類型「不了解向量夾角的定義」的犯錯人數在後測與延後測人數差異較大之外,其餘錯誤類型犯錯人數在後測與延後測均無明顯改變,顯示補救教學具有保留效果。Item 高一學生解一元二次不等式的主要錯誤類型及其補救教學之研究(2005) 陳聖雄摘要 本研究分為兩部分。一為探討高一學生在一般的教學之後,對於一元二次不等式解題上有哪些主要錯誤類型及造成這些主要錯誤之原因;二為探討16位在一元二次不等式主要錯誤類型上犯錯情形嚴重的高一學生,在接受補救教學活動後,答題正確率的變化情形、錯誤類型的改變、補救教學活動成效的保留情形,以及學生對接受補救教學活動的看法。 本研究的補救教學活動費時三堂課,以PowerPoint為工具作一元二次不等式的動態圖解教學,並搭配以Visual Basic程式所撰寫的二次函數繪圖軟體的動態圖形展示。 根據本研究,學生在一元二次不等式解題上的主要誤類型有下列九種:任意開方、變號處理錯誤、任意平方、將領導係數當成正數來處理、產生虛數比大小的謬誤、過度使用「無解」的概念、不會由二次函數圖形直接看出一元二次不等式的解、無法判斷 恆為正數或恆為負數的充要條件、認為不等式的解只包含整數的情形。造成這些主要錯誤類型的原因可分為下列六類:將先前學習過的知識作錯誤的類推;受到老師教學口訣、教材編排、及不當記憶公式的影響;先備知識不足;無法將一元二次不等式和二次函數的圖形作正確的聯結;對不等式的運算邏輯不清楚;受到直觀的影響。 就補救教學活動的成效而言,每位學生在後測的答題的正確率比起前測時均提高,且參與的學生其主要錯誤類型犯錯次數大致上獲得相當程度的改善,特別是「不會由二次函數圖形直接看出所對應之一元二次不等式的解」及「產生虛數比大小的謬誤」的錯誤類型,學生的犯錯次數已大幅降低。而由延後測各小題答題正確率、個人答題正確率、錯誤類型的變化和學生在後測的表現差異不大,顯示補救教學活動具有一定程度的保留。此外,學生普遍認為由電腦繪製函數圖形的輔助學習內容與教材比起從前變得更生動且有意義,能增進學習意願。